Click
here to close Hello! We notice that
you are using Internet Explorer, which is not supported by Echinobase
and may cause the site to display incorrectly. We suggest using a
current version of Chrome,
FireFox,
or Safari.
Sci Rep
2021 Feb 25;111:4513. doi: 10.1038/s41598-021-83961-z.
Show Gene links
Show Anatomy links
Sea stars generate downforce to stay attached to surfaces.
Hermes M
,
Luhar M
.
Abstract
Intertidal sea stars often function in environments with extreme hydrodynamic loads that can compromise their ability to remain attached to surfaces. While behavioral responses such as burrowing into sand or sheltering in rock crevices can help minimize hydrodynamic loads, previous work shows that sea stars also alter body shape in response to flow conditions. This morphological plasticity suggests that sea star body shape may play an important hydrodynamic role. In this study, we measured the fluid forces acting on surface-mounted sea star and spherical dome models in water channel tests. All sea star models created downforce, i.e., the fluid pushed the body towards the surface. In contrast, the spherical dome generated lift. We also used Particle Image Velocimetry (PIV) to measure the midplane flow field around the models. Control volume analyses based on the PIV data show that downforce arises because the sea star bodies serve as ramps that divert fluid away from the surface. These observations are further rationalized using force predictions and flow visualizations from numerical simulations. The discovery of downforce generation could explain why sea stars are shaped as they are: the pentaradial geometry aids attachment to surfaces in the presence of high hydrodynamic loads.
Figure 1. Mean (a) drag force, (b) lift force, (c) drag coefficient, and (d) lift coefficient values for sea star and spherical dome models shown as functions of freestream velocity (a,b) and Reynolds number (c,d). The sea star models have aspect ratios \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$AR = 4.0$$\end{document}AR=4.0 (red symbols), 2.5 (green symbols), and 1.5 (blue symbols).
Figure 2. Drag and lift coefficient values for sea star models for varying orientation angles at flow speed \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$U \approx 0.46$$\end{document}U≈0.46 ms\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{-1}$$\end{document}-1. Given the pentaradial symmetry of the sea star models, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_d$$\end{document}Cd and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_L$$\end{document}CL for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Theta = 36\,^\circ $$\end{document}Θ=36∘ to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Theta = 72\,^\circ $$\end{document}Θ=72∘ can be estimated by mirroring the data shown in this figure.
Figure 3. Mean flow visualization from experiments (a–c) and CFD simulations (d–f) for: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$AR = 4.0$$\end{document}AR=4.0 sea star model (a,c); \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$AR = 1.5$$\end{document}AR=1.5 sea star model (b,e); and spherical dome (c,f). The experiments show results for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$U = 0.47 \pm 0.01$$\end{document}U=0.47±0.01 ms\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{-1}$$\end{document}-1 while the simulations were performed for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$U = 0.35$$\end{document}U=0.35 ms\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{-1}$$\end{document}-1. Panels (a–c) show the vector field estimated from PIV while panels (d–f) show contours of the mean velocity in the streamwise direction. All panels show the flow field at the central (or median) plane of the models. The sea star models are oriented at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Theta = 0^\circ $$\end{document}Θ=0∘. Figure created using Ansys Fluent 2019 R2 https://www.ansys.com/.
Figure 4. (a) Drag and (b) lift coefficients of models for experiments and simulations in a flow with speed 0.35 ms\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{-1}$$\end{document}-1.
Figure 5. Pathlines of flow over a spherical dome, cone, pyramid, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$AR=1.5$$\end{document}AR=1.5 sea star, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$AR=4.0$$\end{document}AR=4.0 sea star, and triangular prism. The pathlines are colored based on the local streamwise vorticity. Objects are placed in order of descending lift force. Figure created using Ansys Fluent 2019 R2 https://www.ansys.com/.
Figure 6. (a) Schematic showing the sea star and spherical dome models tested in the experiments. (b) Schematic of load cell-model attachment assembly, including: (1) servo for controlling orientation angle \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Theta $$\end{document}Θ, (2) bearing and load cell coupling mount, (3) ATI Gamma load cell, (4) linear servo for vertical positioning.
Ellers,
Form and Motion of Donax variabilis in Flow.
1995, Pubmed
Ellers,
Form and Motion of Donax variabilis in Flow.
1995,
Pubmed
Hayne,
Intertidal sea stars (Pisaster ochraceus) alter body shape in response to wave action.
2013,
Pubmed
,
Echinobase
Hennebert,
Sea star tenacity mediated by a protein that fragments, then aggregates.
2014,
Pubmed
,
Echinobase
Lengerer,
Interspecies comparison of sea star adhesive proteins.
2019,
Pubmed
,
Echinobase
Martinez,
Underwater punting by an intertidal crab: a novel gait revealed by the kinematics of pedestrian locomotion in air versus water.
1998,
Pubmed
Pjeta,
Integrative Transcriptome and Proteome Analysis of the Tube Foot and Adhesive Secretions of the Sea Urchin Paracentrotus lividus.
2020,
Pubmed
,
Echinobase
Santos,
Adhesion of echinoderm tube feet to rough surfaces.
2005,
Pubmed
,
Echinobase