Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-37517
Biopolymers 2000 Nov 01;546:464-75. doi: 10.1002/1097-0282(200011)54:6<464::AID-BIP90>3.0.CO;2-N.
Show Gene links Show Anatomy links

Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. II. Pro,Asn-rich tandem repeats.

Zhang B , Xu G , Evans JS .


???displayArticle.abstract???
In the biomineralization process, a number of Pro-rich proteins participate in the formation of three-dimensional supramolecular structures. One such protein superfamily, the Pro,Gly-rich sea urchin intracrystalline spicule matrix proteins, form protein-protein supramolecular assemblies that modify the microstructure of the inorganic mineral phase (calcite) within embryonic sea urchin spicules and adult sea urchin spines. These proteins represent a useful model for understanding Pro sequence usage and the resulting generation of extended or "open" structures for protein-protein and/or protein-crystal recognition. In the sea urchin spicule matrix protein, SM50 (Strongylocentrotus purpuratus), there exists an unusual 20-residue Pro,Asn-containing repeat, &bond;PNNPNNPNPNNPNNPNNPNPbond which links the upstream 15-residue C-terminal domain and the downstream 211-residue beta-spiral repeat domain. To define the structural preferences of this 20-residue repeat, we created a 20-residue N- and C-terminal "capped" peptidomimetic of this sequence. Using far-uv CD dichroism, CH(alpha) and alpha-(15)N conformational shifts, (3)J(NH-CHalpha) coupling constants, sequential d(NN(i, i + 1)) rotating frame nuclear Overhauser effect connectivities, d(alphaN(i, i + 1))/d(NN(i, i + 1)) intensity ratios, amide temperature shift coefficients, amide solvent exchange, and simulated annealing refinement protocols, we have determined that this 20-residue repeat motif adopts an extended "twist" structure consisting of turn- and coil-like regions. These findings are consistent with previous studies, which have shown that Pro-rich tandem repeats adopt extended, flexible structures in solution. We hypothesize that this 20-residue repeat may fulfill the role of a mineral-binding domain, a protein-protein docking domain, or as an internal "molecular spacer" for the SM50 protein during spicule biocomposite formation.

???displayArticle.pubmedLink??? 10951331
???displayArticle.link??? Biopolymers


Genes referenced: LOC100887844