Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-34952
J Mol Biol 1983 Apr 25;1654:609-32. doi: 10.1016/s0022-2836(83)80270-8.
Show Gene links Show Anatomy links

Mitochondrial DNA sequences in the nuclear genome of Strongylocentrotus purpuratus.

Jacobs HT , Posakony JW , Grula JW , Roberts JW , Xin JH , Britten RJ , Davidson EH .


???displayArticle.abstract???
Two sea urchin embryo complementary DNA clones representing mitochondrial 16 S ribosomal RNA and cytochrome oxidase subunit I messenger RNA have been characterized. The cloned cDNAs are colinear with sea urchin mitochondrial DNA, and their identification is based on cross-hybridization with known restriction fragments of human mitochondrial DNA, and on nucleotide sequence determinations. The mitochondrial cDNA clones also displayed an unexpected reaction with specific genomic DNA sequences in gel blot hybridizations. Genomic phage lambda recombinants containing sequences hybridizing with the mitochondrial clones were isolated and the arrangement of these sequences was determined. The genomic region studied contains a sequence homologous with the 3'' end of the mitochondrial 16 S rRNA gene, flanked on one side by what is possibly a complete copy of the cytochrome oxidase subunit I gene, and on the other by a duplication of a fragment of this gene. The nucleotide sequence divergence between the mitochondrial and nuclear homologues of the cytochrome oxidase subunit I gene varies for different regions of the gene, from about 13% to 25%, while there is about 8% sequence divergence between nuclear and mitochondrial versions of the 3'' 16S rRNA sequence. The structure of the genomic mitochondrial sequence homologues indicates that during sea urchin evolution there occurred a germ-line transposition of a fragment of the mitochondrial genome into the nuclear DNA, followed by rearrangements and single nucleotide substitutions.

???displayArticle.pubmedLink??? 6687903
???displayArticle.link??? J Mol Biol
???displayArticle.grants??? [+]

Genes referenced: LOC100887844