ECB-ART-51491
RSC Adv
2023 Apr 03;1316:11002-11009. doi: 10.1039/d2ra08334e.
Show Gene links
Show Anatomy links
Facile preparation and dielectric properties of BaTiO3 with different particle sizes and morphologies.
Abstract
BaTiO3 nanoparticles were prepared by the hydrothermal method, and the effect of 1-(propyl-3-methoxysilyl)-3-methylimidazole chloride on the size of BaTiO3 particles was investigated. The obtained BaTiO3 was characterized by XRD, SEM, TEM, and Raman spectroscopy; and the dielectric properties of BaTiO3 ceramic sheets were tested. The results indicate that the spherical BaTiO3-N prepared without an ionic liquid was in a tetragonal phase with an average particle size of 129 nm. When an ionic liquid was added, the size of the BaTiO3-IL decreased and the degree of agglomeration increased. In addition, with increasing quantity of ionic liquid, the tetragonal-phase content of BaTiO3-IL gradually decreased until complete transformation into cubic phase. The dielectric constant of the BaTiO3-N ceramics was the highest, and the dielectric constant decreased with decreasing BaTiO3 particle size. Moreover, two types of BaTiO3 nanoparticles (bowl- and sea urchin-shaped) were prepared by changing the hydrothermal conditions and additives. The average particle size of the former was 92 nm, the tetragonal-phase content was ca. 90%, and the dielectric constant was large; whereas the sea urchin-shaped BaTiO3 consisted of small particles in the cubic phase, and the dielectric constant was small.
PubMed ID: 37033420
Article link: RSC Adv
References [+] :
Cruz,
Phase Transitions and Electrochemical Properties of Ionic Liquids and Ionic Liquid-Solvent Mixtures.
2021, Pubmed