Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-37647
J Biol Chem 2001 Apr 06;27614:11223-5. doi: 10.1074/jbc.M009335200.
Show Gene links Show Anatomy links

Prolonged inactivation of nicotinic acid adenine dinucleotide phosphate-induced Ca2+ release mediates a spatiotemporal Ca2+ memory.

Churchill GC , Galione A .


???displayArticle.abstract???
Although numerous extracellular stimuli are coupled to increases in intracellular Ca(2+), different stimuli are thought to achieve specificity by eliciting different spatiotemporal Ca(2+) increases. We investigated the effect of nicotinic acid adenine dinucleotide phosphate (NAADP) inactivation on spatiotemporal Ca(2+) signals in intact sea urchin eggs. The photorelease of NAADP but not inositol 1,4,5-trisphosphate or cyclic ADP-ribose resulted in self-inactivation. When NAADP was released first locally and subsequently globally, the spatial pattern of the first response shaped that of the second. Specifically, the local release of NAADP created a Ca(2+) gradient that was reversed during the subsequent global release of NAADP. Neither cyclic ADP-ribose nor inositol 1,4,5-trisphosphate showed a similar effect. In contrast to homogenates, NAADP inactivation was reversible in intact eggs with resensitization occurring in approximately 20 min. Because initial NAADP responses affect later responses, NAADP can serve as a mechanism for a Ca(2+) memory that has both spatial and temporal components. This NAADP-mediated Ca(2+) memory provides a novel mechanism for cells to control spatiotemporal Ca(2+) increases.

???displayArticle.pubmedLink??? 11139579
???displayArticle.link??? J Biol Chem


Genes referenced: LOC100887844 LOC576539