Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-45237
PeerJ 2017 Jan 01;5:e3067. doi: 10.7717/peerj.3067.
Show Gene links Show Anatomy links

Hard time to be parents? Sea urchin fishery shifts potential reproductive contribution of population onto the shoulders of the young adults.

Loi B , Guala I , Pires da Silva R , Brundu G , Baroli M , Farina S .


???displayArticle.abstract???
BACKGROUND: In Sardinia, as in other regions of the Mediterranean Sea, sustainable fisheries of the sea urchin Paracentrotus lividus have become a necessity. At harvesting sites, the systematic removal of large individuals (diameter ≥ 50 mm) seriously compromises the biological and ecological functions of sea urchin populations. Specifically, in this study, we compared the reproductive potential of the populations from Mediterranean coastal areas which have different levels of sea urchin fishing pressure. The areas were located at Su Pallosu Bay, where pressure is high and Tavolara-Punta Coda Cavallo, a marine protected area where sea urchin harvesting is low. METHODS: Reproductive potential was estimated by calculating the gonadosomatic index (GSI) from June 2013 to May 2014 both for individuals of commercial size (diameter without spines, TD ≥ 50 mm) and the undersized ones with gonads (30 ≤ TD < 40 mm and 40 ≤ TD < 50 mm). Gamete output was calculated for the commercial-size class and the undersized individuals with fertile gonads (40 ≤ TD < 50 mm) in relation to their natural density (gamete output per m2). RESULTS: The reproductive potential of populations was slightly different at the beginning of the sampling period but it progressed at different rates with an early spring spawning event in the high-pressure zone and two gamete depositions in early and late spring in the low-pressure zone. For each fertile size class, GSI values changed significantly during the year of our study and between the two zones. Although the multiple spawning events determined a two-fold higher total gamete output of population (popTGO) in the low-pressure zone, the population mean gamete output (popMGO) was similar in the two zones. In the high-pressure zone, the commercial-sized individuals represented approximatively 5% of the population, with almost all the individuals smaller than 60 mm producing an amount of gametes nearly three times lower than the undersized ones. Conversely, the high density of the undersized individuals released a similar amount of gametes to the commercial-size class in the low-pressure zone. DISCUSSION: Overall, the lack of the commercial-size class in the high-pressure zone does not seem to be very alarming for the self-supporting capacity of the population, and the reproductive potential contribution seems to depend more on the total density of fertile sea urchins than on their size. However, since population survival in the high-pressure zone is supported by the high density of undersized sea urchins between 30 and 50 mm, management measures should be addressed to maintain these sizes and to shed light on the source of the larval supply.

???displayArticle.pubmedLink??? 28289567
???displayArticle.pmcLink??? PMC5345490
???displayArticle.link??? PeerJ


Genes referenced: LOC100887844 LOC115925415


???attribute.lit??? ???displayArticles.show???
References [+] :
Anderson, Rapid global expansion of invertebrate fisheries: trends, drivers, and ecosystem effects. 2011, Pubmed