Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-52491
Lab Chip 2021 Jan 21;212:331-343. doi: 10.1039/d0lc00678e.
Show Gene links Show Anatomy links

A digital protein microarray for COVID-19 cytokine storm monitoring.

Song Y , Ye Y , Su SH , Stephens A , Cai T , Chung MT , Han MK , Newstead MW , Yessayan L , Frame D , Humes HD , Singer BH , Kurabayashi K .


Abstract
Despite widespread concern regarding cytokine storms leading to severe morbidity in COVID-19, rapid cytokine assays are not routinely available for monitoring critically ill patients. We report the clinical application of a digital protein microarray platform for rapid multiplex quantification of cytokines from critically ill COVID-19 patients admitted to the intensive care unit (ICU) at the University of Michigan Hospital. The platform comprises two low-cost modules: (i) a semi-automated fluidic dispensing/mixing module that can be operated inside a biosafety cabinet to minimize the exposure of the technician to the virus infection and (ii) a 12-12-15 inch compact fluorescence optical scanner for the potential near-bedside readout. The platform enabled daily cytokine analysis in clinical practice with high sensitivity (<0.4 pg mL-1), inter-assay repeatability (∼10% CV), and rapid operation providing feedback on the progress of therapy within 4 hours. This test allowed us to perform serial monitoring of two critically ill patients with respiratory failure and to support immunomodulatory therapy using the selective cytopheretic device (SCD). We also observed clear interleukin-6 (IL-6) elevations after receiving tocilizumab (IL-6 inhibitor) while significant cytokine profile variability exists across all critically ill COVID-19 patients and to discover a weak correlation between IL-6 to clinical biomarkers, such as ferritin and C-reactive protein (CRP). Our data revealed large subject-to-subject variability in patients' response to COVID-19, reaffirming the need for a personalized strategy guided by rapid cytokine assays.

PubMed ID: 33211045
Article link: Lab Chip
Grant support: [+]


References [+] :
Akama, Wash- and Amplification-Free Digital Immunoassay Based on Single-Particle Motion Analysis. 2019, Pubmed