Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-48828
Int J Biol Macromol 2020 Jul 15;155:1003-1018. doi: 10.1016/j.ijbiomac.2019.11.064.
Show Gene links Show Anatomy links

Separation, purification, structural analysis and immune-enhancing activity of sulfated polysaccharide isolated from sea cucumber viscera.

Yang D , Lin F , Huang Y , Ye J , Xiao M .


Abstract
A novel sulfated polysaccharide (SCVP-1) was isolated from sea cucumber viscera and purified to elucidate its structure and immune-enhancing ability. SCVP-1 was found to be a homogeneous polysaccharide with a relative molecular weight of 180.8 kDa and composed of total sugars (60.2 ± 2.6%), uronic acid (15.3 ± 1.8%), proteins (6.8 ± 0.8%), and sulfate groups (18.1 ± 0.9%). SCVP-1 consisted of mannose, glucosamine, glucuronic acid, N-acetyl-galactosamine, glucose, galactose and fucose at an approximate molar ratio of 1.00:1.41:0.88:2.14:1.90:1.12:1.24. The fourier transform infrared spectra (FT-IR) and nuclear magnetic resonance (NMR) analyses showed that SCVP-1 was a kind of glycosaminoglycan. And the sulfation patterns of the fucose branches were Fuc2,4S, Fuc3,4S and Fuc0S. The surface morphology of SCVP-1 presented loose and irregular sheet structure formed by aggregation of polysaccharide molecules with spherical structure. Moreover, SCVP-1 promoted the production of nitric oxide (NO) and cytokines (IL-1β, IL-6 and TNF-α) by RAW264.7 cells as well as the expression of related genes (iNOS, IL-1β, IL-6 and TNF-α) and also enhanced their phagocytic activity through TLR4-mediated activation of the MAPKs and NF-κB signaling pathways. This study suggests that sea cucumber viscera are good sources of polysaccharides and SCVP-1 might be a novel immunomodulator.

PubMed ID: 31712137
Article link: Int J Biol Macromol


Genes referenced: LOC100887844 LOC100889101