Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-41190
Front Zool 2009 Jun 18;6:11. doi: 10.1186/1742-9994-6-11.
Show Gene links Show Anatomy links

The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion.

Mashanov VS , Zueva OR , Heinzeller T , Aschauer B , Naumann WW , Grondona JM , Cifuentes M , Garcia-Arraras JE .


???displayArticle.abstract???
BACKGROUND: Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissner''s substance (RS), a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers. RESULTS: In the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system. CONCLUSION: Our results show that: a) the glial cells of the holothurian tubular nervous system produce a material similar to Reissner''s substance known to be synthesized by secretory glial cells in all chordates studied so far; b) the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common ancestor of all the Deuterostomia.

???displayArticle.pubmedLink??? 19538733
???displayArticle.pmcLink??? PMC2705372
???displayArticle.link??? Front Zool
???displayArticle.grants??? [+]

Genes referenced: gli3 LOC100887844 LOC115919910 LOC752072


???attribute.lit??? ???displayArticles.show???
References [+] :
Adoutte, The new animal phylogeny: reliability and implications. 2000, Pubmed