Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-38178
Connect Tissue Res 2003 Jan 01;44 Suppl 1:326-34.
Show Gene links Show Anatomy links

A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor.

Olszta MJ , Odom DJ , Douglas EP , Gower LB .


???displayArticle.abstract???
Biologically mineralized tissues are well recognized for their unusual crystal morphologies and hierarchically organized composite structures. The soluble acidic macromolecules associated with biominerals are thought to play an important role in modulating the mineral morphology. Our in vitro studies, which use acidic polypeptide additives to modify crystal growth of calcium-based minerals, have demonstrated a crystallization mechanism that proceeds via a liquid-phase mineral precursor. Various features of the crystals produced via this mechanism, such as "extruded" mineral fibers and mineralized collagen composites, have led us to propose the hypothesis that an amorphous, liquid-phase precursor could play a fundamental role in the morphogenesis of calcium-based biominerals. Although in vivo evidence of this process remains to be determined, we demonstrate crystallization features that mimic bone and dental enamel and suggest that this process could be relevant to biomineralization in both vertebrates and invertebrates.

???displayArticle.pubmedLink??? 12952217