Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-39550
Zoolog Sci 2005 Aug 01;228:845-52. doi: 10.2108/zsj.22.845.
Show Gene links Show Anatomy links

Developmental potential of small micromeres in sea urchin embryos.

Kurihara H , Amemiya S .


???displayArticle.abstract???
The large micromeres (lMics) of echinoid embryos are reported to have distinct potentials with regard to inducing endo-mesoderm and autonomous differentiation into skeletogenic cells. However, the developmental potential of small micromeres (sMics), the sibling of lMics, has not been clearly demonstrated. In this study we produced chimeric embryos from an animal cap recombined with various numbers of sMics, in order to investigate the developmental potential of sMics in the sea urchin Hemicentrotus pulcherrimus and the sand dollar Scaphechinus mirabilis. We found that sMics of H. pulcherrimus had weak potential for inducing presumptive ectoderm cells to form endo-mesoderm structures. The inducing potential of ten sMics was almost equivalent to that of one lMic. The sMics also had the potential to differentiate autonomously into skeletogenic cells. Conversely, the sMics of S. mirabilis did not show either inductive or skeletogenic differentiation potential. The sMics of both species had the potential to induce oral-aboral axis establishment. These results suggest that the potential for sMics to differentiate into skeletogenic cells and for inducing the presumptive ectoderm to differentiate into endomesoderm differs across species, while the potential of sMics to induce the oral-aboral axis is conserved among species.

???displayArticle.pubmedLink??? 16141697
???displayArticle.link??? Zoolog Sci


Genes referenced: LOC100887844 LOC115925415