Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-42207
Mol Ecol 2011 Nov 01;2022:4737-55. doi: 10.1111/j.1365-294X.2011.05309.x.
Show Gene links Show Anatomy links

Did vicariance and adaptation drive cryptic speciation and evolution of brooding in Ophioderma longicauda (Echinodermata: Ophiuroidea), a common Atlanto-Mediterranean ophiuroid?

Boissin E , Stöhr S , Chenuil A .


???displayArticle.abstract???
Over the last decade, cryptic speciation has been discovered in an increasing number of taxa. Species complexes are useful models for the understanding of speciation processes. Motivated by the discovery of brooding specimens in the common Atlanto-Mediterranean broadcast spawning brittle star, Ophioderma longicauda, a recent study revealed the occurrence of divergent mitochondrial lineages. We analysed 218 specimens from 23 locations spread over the geographic range of the species with partial Cytochrome c Oxidase subunit I (COI) sequences. A subset of this sample was also surveyed with the internal transcribed spacer of the ribosomal DNA cluster (nuclear ITS-1). Our study revealed six highly divergent mitochondrial lineages, and the ITS-1 data confirmed that they most likely represent a species complex. Geographic ranges, abundances and genetic structures are contrasted among the putative cryptic species. Lineages in which brooding specimens have been found form a monophyletic group and are restricted to the Eastern Mediterranean basin, an oligotrophic zone. A phylogeny-trait association analysis revealed a phylogenetic signal for low ''chlorophyll a'' values (our proxy for oligotrophy). An ecological shift related to the hyper oligotrophy of the Eastern Mediterranean region is therefore likely to have played a role in the evolution of brooding. This study revealed that a complex mixture of vicariance, population expansion, adaptive divergence and possibly high local diversification rates resulting from brooding has shaped the evolution of this species complex. The dating analysis showed that these events probably occurred in the Pleistocene epoch.

???displayArticle.pubmedLink??? 22008223
???displayArticle.link??? Mol Ecol


Genes referenced: LOC577219 LOC582915