Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-52701
Animals (Basel) 2023 Nov 07;1322:. doi: 10.3390/ani13223436.
Show Gene links Show Anatomy links

Temperature-Dependent Food Consumption Rates of the Sea Urchin Mesocentrotus nudus and Top Shell Turbo sazae: Potential Impacts on Seaweed Beds.

Seo J , Koo BJ .


Abstract
In Korea, the expansion of barren ground and a shift in macrograzer habitats due to increasing water temperatures associated with climate change are becoming increasingly problematic. This study assessed the potential effects of the sea urchin Mesocentrotus nudus and top shell Turbo sazae on seaweed beds by examining changes in their food consumption rates in response to changes in temperature. The food consumption rates of kelp (Saccharina japonica) for both species were estimated at 5 °C, 10 °C, 15 °C, 20 °C, and 25 °C in laboratory experiments. The rate for M. nudus increased with increasing water temperature, with the highest rate of 0.001 g g-1 d-1 at 15 °C and 20 °C, and the lowest at 25 °C, which killed some individual sea urchins. The rate for T. sazae also increased with increasing water temperature, with the highest being 0.087 g g-1 d-1 at 25 °C and the lowest being at 5 °C. T. sazae had a higher food consumption rate than M. nudus at all temperatures; as water temperature increased, the difference between species increased, with the largest difference occurring at 25 °C. These findings indicate that as water temperature increases, T. sazae places greater feeding pressure on macroalgae than M. nudus.

PubMed ID: 38003054
Article link: Animals (Basel)
Grant support: [+]


References [+] :
BOOLOOTIAN, DIGESTION OF BROWN ALGAE AND THE DISTRIBUTION OF NUTRIENTS IN THE PURPLE SEA URCHIN STRONGYLOCENTROTUS PURPURATUS. 1964, Pubmed, Echinobase