Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-49774
J Org Chem 2020 Dec 18;8524:15908-15919. doi: 10.1021/acs.joc.0c01009.
Show Gene links Show Anatomy links

Chemical Synthesis of Fucosylated Chondroitin Sulfate Oligosaccharides.

Zhang L , Xu P , Liu B , Yu B .


Abstract
Fucosylated chondroitin sulfates (FuCSs) are a unique type of polysaccharides occurring in sea cucumber that show a variety of biological activities. In particular, well-defined FuCS oligosaccharides, consisting of a trisaccharide repeating unit of β-d-GalNAc(4,6-diS)-(1→4)-[α-l-Fuc(2,4-diS)-(1→3)]-β-d-GlcUA, display potent anticoagulant activity via selective inhibition of the intrinsic tenase, which could be developed into anticoagulant drugs without bleeding risk. Herein, we report an effective approach to the synthesis of FuCS oligosaccharides, as demonstrated by the successful elaboration of FuCS tri-, hexa-, and nonasaccharides. The syntheses employ an orthogonally protected trisaccharide as a pivotal building block that can be readily converted into the donor and acceptor for glycosidic coupling. In addition, the internal patterns of protecting groups, involving N-trichloroacetyl for N-acetyl group, benzylidene and benzyl groups for sulfonated hydroxyl groups, and benzoyl and methyl esters for free hydroxyl and carboxylic acid, respectively, ensure stereoselective formation of the glycosidic linkages and sequential transformation into the desired FuCS oligosaccharides.

PubMed ID: 32567313
Article link: J Org Chem