Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-41089
Proc Natl Acad Sci U S A 2009 Apr 14;10615:6048-53. doi: 10.1073/pnas.0810300106.
Show Gene links Show Anatomy links

The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution.

Ma Y , Aichmayer B , Paris O , Fratzl P , Meibom A , Metzler RA , Politi Y , Addadi L , Gilbert PU , Weiner S .


Abstract
The sea urchin tooth is a remarkable grinding tool. Even though the tooth is composed almost entirely of calcite, it is used to grind holes into a rocky substrate itself often composed of calcite. Here, we use 3 complementary high-resolution tools to probe aspects of the structure of the grinding tip: X-ray photoelectron emission spectromicroscopy (X-PEEM), X-ray microdiffraction, and NanoSIMS. We confirm that the needles and plates are aligned and show here that even the high Mg polycrystalline matrix constituents are aligned with the other 2 structural elements when imaged at 20-nm resolution. Furthermore, we show that the entire tooth is composed of 2 cooriented polycrystalline blocks that differ in their orientations by only a few degrees. A unique feature of the grinding tip is that the structural elements from each coaligned block interdigitate. This interdigitation may influence the fracture process by creating a corrugated grinding surface. We also show that the overall Mg content of the tooth structural elements increases toward the grinding tip. This probably contributes to the increasing hardness of the tooth from the periphery to the tip. Clearly the formation of the tooth, and the tooth tip in particular, is amazingly well controlled. The improved understanding of these structural features could lead to the design of better mechanical grinding and cutting tools.

PubMed ID: 19332795
PMC ID: PMC2662956
Article link: Proc Natl Acad Sci U S A


Genes referenced: LOC100887844

References [+] :
Chan, Microbial polysaccharides template assembly of nanocrystal fibers. 2004, Pubmed