Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-32192
Biochim Biophys Acta 1989 Mar 27;9801:109-16. doi: 10.1016/0005-2736(89)90206-x.
Show Gene links Show Anatomy links

Egg jelly triggers a calcium influx which inactivates and is inhibited by calmodulin antagonists in the sea urchin sperm.

Guerrero A , Darszon A .


???displayArticle.abstract???
Sea urchin sperm must undergo the acrosome reaction to fertilize eggs. The natural inducer of this reaction is the most external coat of the egg, named ''jelly''. The ionic composition of the extracellular and intracellular media and the permeability properties of the sperm plasma membrane are fundamental in this reaction. As Ca2+ is required for the acrosome reaction to occur, its intracellular concentration ([Ca2+]i) was measured with fura-2. In 10 mM Ca2+, egg jelly induced the acrosome reaction and an increase in [Ca2+]i that lasted for several minutes. However, at 0.5 or 2 mM Ca2+, it became evident that the Ca2+-influx pathway activated by jelly opened only for a few seconds; this prevented both the full increase in [Ca2+]i and the acrosome reaction even after the concentration of Ca2+ was raised to 10 mM. In the presence of jelly, the time this permeability pathway remained open was inversely related to the extracellular concentration of Ca2+ ([ Ca2+]e). Using Bisoxonol (a permeant fluorescent membrane potential probe), it was found that the jelly-induced depolarization depended on [Ca2+]e and was proportional to the increase in [Ca2+]i. Since [Ca2+]i could affect the jelly-induced Ca2+ influx through calmodulin, two of its antagonists, trifluoperazine and W-7, were tested. Both compounds blocked the acrosome reaction by inhibiting the jelly-induced increase in [Ca2+]i. W-5 at the same concentration had no effect. The results suggest that one of the jelly-activated Ca2+-influx pathways, probably a channel, is the target of the calmodulin antagonists.

???displayArticle.pubmedLink??? 2923893
???displayArticle.link??? Biochim Biophys Acta


Genes referenced: LOC100887844