Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-32935
Dev Biol 1985 Feb 01;1072:290-300. doi: 10.1016/0012-1606(85)90312-4.
Show Gene links Show Anatomy links

Multiple levels of regulation of protein synthesis at fertilization in sea urchin eggs.

Winkler MM , Nelson EM , Lashbrook C , Hershey JW .


???displayArticle.abstract???
Fertilization of sea urchin eggs results in a large stimulation of protein synthesis. This increase in protein synthesis is mediated by the mobilization of stored maternal mRNA (mRNPs) into polysomes, but the details of the molecular mechanisms which regulate this process are not well understood. Using a sea urchin egg cell-free translation system, evidence has been obtained which indicates that the capacity to initiate protein synthesis on new mRNAs is limited. Addition of exogenous mRNAs failed to stimulate overall protein synthesis, whereas supplementing the system with a nuclease-treated reticulocyte lysate, an S-100 supernatant fraction, or purified eIF-2 stimulated nearly twofold. In addition, the levels of 43 S preinitiation complexes containing a 40 S ribosomal subunit and methionyl-tRNA were increased at pH 7.4 compared to pH 6.9, or when reticulocyte S-100 was added. However, other experiments showed clearly that mRNA availability may also regulate translation in the sea urchin egg. Sea urchin lysates only stimulated poorly the nuclease-treated reticulocyte lysate system, and the mRNPs in the sea urchin lysate did not bind to reticulocyte 43 S preinitiation complexes. Since purified sea urchin egg mRNA was active in both assays, the bulk of sea urchin mRNA must be masked in the egg, and remain masked in the in vitro assays. Thus, protein synthesis appears to be regulated at both the level of mRNA availability and the activity of components of the translational machinery.

???displayArticle.pubmedLink??? 3972155
???displayArticle.link??? Dev Biol
???displayArticle.grants??? [+]

Genes referenced: LOC100887844 LOC115919910 LOC115925415