Click
here to close Hello! We notice that
you are using Internet Explorer, which is not supported by Echinobase
and may cause the site to display incorrectly. We suggest using a
current version of Chrome,
FireFox,
or Safari.
Integr Comp Biol
2014 Oct 01;544:723-33. doi: 10.1093/icb/icu087.
Show Gene links
Show Anatomy links
Specification to biomineralization: following a single cell type as it constructs a skeleton.
Lyons DC
,
Martik ML
,
Saunders LR
,
McClay DR
.
???displayArticle.abstract???
The sea urchin larva is shaped by a calcite endoskeleton. That skeleton is built by 64 primary mesenchyme cells (PMCs) in Lytechinus variegatus. The PMCs originate as micromeres due to an unequal fourth cleavage in the embryo. Micromeres are specified in a well-described molecular sequence and enter the blastocoel at a precise time using a classic epithelial-mesenchymal transition. To make the skeleton, the PMCs receive signaling inputs from the overlying ectoderm, which provides positional information as well as control of the growth of initial skeletal tri-radiates. The patterning of the skeleton is the result both of autonomous inputs from PMCs, including production of proteins that are included in the skeletal matrix, and of non-autonomous dynamic information from the ectoderm. Here, we summarize the wealth of information known about how a PMC contributes to the skeletal structure. The larval skeleton is a model for understanding how information encoded in DNA is translated into a three-dimensional crystalline structure.
Adomako-Ankomah,
Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation.
2013, Pubmed,
Echinobase
Adomako-Ankomah,
Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation.
2013,
Pubmed
,
Echinobase
Armstrong,
Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos.
1994,
Pubmed
,
Echinobase
Bradham,
p38 MAPK is essential for secondary axis specification and patterning in sea urchin embryos.
2006,
Pubmed
,
Echinobase
Bradham,
Chordin is required for neural but not axial development in sea urchin embryos.
2009,
Pubmed
,
Echinobase
Chuang,
Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction.
1996,
Pubmed
,
Echinobase
Coffman,
Oral-aboral axis specification in the sea urchin embryo, IV: hypoxia radializes embryos by preventing the initial spatialization of nodal activity.
2014,
Pubmed
,
Echinobase
Duboc,
A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
2008,
Pubmed
,
Echinobase
Duboc,
Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
2008,
Pubmed
,
Echinobase
Duboc,
Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
2004,
Pubmed
,
Echinobase
Duloquin,
Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton.
2007,
Pubmed
,
Echinobase
Ettensohn,
The regulation of primary mesenchyme cell migration in the sea urchin embryo: transplantations of cells and latex beads.
1986,
Pubmed
,
Echinobase
Ettensohn,
The regulation of primary mesenchyme cell patterning.
1990,
Pubmed
,
Echinobase
Ettensohn,
Patterning the early sea urchin embryo.
2000,
Pubmed
,
Echinobase
Ettensohn,
Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo.
1993,
Pubmed
,
Echinobase
Fink,
Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells.
1985,
Pubmed
,
Echinobase
Gong,
Phase transitions in biogenic amorphous calcium carbonate.
2012,
Pubmed
,
Echinobase
Hodor,
The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
1998,
Pubmed
,
Echinobase
Katow,
Ultrastructural and time-lapse studies of primary mesenchyme cell behavior in normal and sulfate-deprived sea urchin embryos.
1981,
Pubmed
,
Echinobase
Kenny,
SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres.
1999,
Pubmed
,
Echinobase
Knapp,
Recombinant sea urchin vascular endothelial growth factor directs single-crystal growth and branching in vitro.
2012,
Pubmed
,
Echinobase
Li,
Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo.
2014,
Pubmed
,
Echinobase
Livingston,
A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus.
2006,
Pubmed
,
Echinobase
Logan,
Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
1999,
Pubmed
,
Echinobase
Lyons,
Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states.
2012,
Pubmed
,
Echinobase
Malinda,
Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues.
1994,
Pubmed
,
Echinobase
Malinda,
Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo.
1995,
Pubmed
,
Echinobase
Marcus,
Developmental aberrations associated with twinning in laboratory-reared sea urchins.
1979,
Pubmed
,
Echinobase
McClay,
Evolutionary crossroads in developmental biology: sea urchins.
2011,
Pubmed
,
Echinobase
McClay,
The role of thin filopodia in motility and morphogenesis.
1999,
Pubmed
,
Echinobase
McIntyre,
Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm.
2013,
Pubmed
,
Echinobase
McIntyre,
Branching out: origins of the sea urchin larval skeleton in development and evolution.
2014,
Pubmed
,
Echinobase
Miller,
Dynamics of thin filopodia during sea urchin gastrulation.
1995,
Pubmed
,
Echinobase
Miller,
Characterization of the role of cadherin in regulating cell adhesion during sea urchin development.
1997,
Pubmed
,
Echinobase
Oliveri,
Global regulatory logic for specification of an embryonic cell lineage.
2008,
Pubmed
,
Echinobase
Oliveri,
A regulatory gene network that directs micromere specification in the sea urchin embryo.
2002,
Pubmed
,
Echinobase
Oliveri,
Activation of pmar1 controls specification of micromeres in the sea urchin embryo.
2003,
Pubmed
,
Echinobase
Pehrson,
The fate of the small micromeres in sea urchin development.
1986,
Pubmed
,
Echinobase
Peterson,
Primary mesenchyme cell patterning during the early stages following ingression.
2003,
Pubmed
,
Echinobase
Rafiq,
The genomic regulatory control of skeletal morphogenesis in the sea urchin.
2012,
Pubmed
,
Echinobase
Range,
Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1.
2007,
Pubmed
,
Echinobase
Röttinger,
FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
2008,
Pubmed
,
Echinobase
Saudemont,
Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm.
2010,
Pubmed
,
Echinobase
Saunders,
Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition.
2014,
Pubmed
,
Echinobase
Shimmi,
Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo.
2005,
Pubmed
Weitzel,
Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled.
2004,
Pubmed
,
Echinobase
Wilt,
The dynamics of secretion during sea urchin embryonic skeleton formation.
2008,
Pubmed
,
Echinobase
Wu,
Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo.
2008,
Pubmed
,
Echinobase
Wu,
The Snail repressor is required for PMC ingression in the sea urchin embryo.
2007,
Pubmed
,
Echinobase
Wu,
Ingression of primary mesenchyme cells of the sea urchin embryo: a precisely timed epithelial mesenchymal transition.
2007,
Pubmed
,
Echinobase
Yajima,
Small micromeres contribute to the germline in the sea urchin.
2011,
Pubmed
,
Echinobase