Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-40288
Proc Natl Acad Sci U S A 2007 Jul 24;10430:12383-8. doi: 10.1073/pnas.0705324104.
Show Gene links Show Anatomy links

A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres.

Revilla-i-Domingo R , Oliveri P , Davidson EH .


Abstract
Specification of sea urchin embryo micromeres occurs early in cleavage, with the establishment of a well defined regulatory state. The architecture of the gene regulatory network controlling the specification process indicates that transcription of the initial tier of control genes depends on a double-negative gate. A gene encoding a transcriptional repressor, pmar1, is activated specifically in micromeres, where it represses transcription of a second repressor that is otherwise active globally. Thus, the micromere-specific control genes, which are the target of the second repressor, are expressed exclusively in this lineage. The double-negative specification gate was logically required from the results of numerous prior experiments, but the identity of the gene encoding the second repressor remained elusive. Here we show that hesC is this gene, and we demonstrate experimentally all of its predicted functions, including global repression of micromere-specific regulatory genes. As logically required, blockade of hesC mRNA translation and global overexpression of pmar1 mRNA have the same effect, which is to cause all of the cells of the embryo to express micromere-specific genes.

PubMed ID: 17636127
PMC ID: PMC1941478
Article link: Proc Natl Acad Sci U S A
Grant support: [+]

Genes referenced: LOC100887844 LOC592057 pmar1
Morpholinos: LOC592057 MO1

References [+] :
Beatus, Notch and neurogenesis. 1998, Pubmed