Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Mol Evol 2009 Aug 01;692:125-41. doi: 10.1007/s00239-009-9256-z.
Show Gene links Show Anatomy links

Aplysia cys-loop glutamate-gated chloride channels reveal convergent evolution of ligand specificity.

Kehoe J , Buldakova S , Acher F , Dent J , Bregestovski P , Bradley J .

Among the members of the superfamily of cys-loop ligand-gated ion channels (LGICs) are receptors distinguished by the presence of two cys-loops in the ligand-binding domain, for example, the glycine receptor. Such receptors have thus far been cloned only from vertebrates and from ecdysozoa (arthropods and nematodes). We have now cloned and expressed two 2-cys-loop receptors from Aplysia californica, a lophotrocozoan, and have shown that they form homomeric glutamate receptors. We have also built up a database including the two receptors cloned here, previously cloned vertebrate and ecdysozoan 2-cys-loop receptors taken from GenBank, and the same type of receptors obtained by a search of recently cloned genomes, including two non-vertebrate chordates, an echinoderm, a crustacean, an annelid, and another mollusk. We subjected these receptors to phylogenetic analysis, alone and in combination with GABA-A receptors from the same phyla and from a recently cloned cnidarian. The phylogenetic analysis revealed the presence of two independent clades of glutamate receptors: one from lophotrocozoa and other from ecdysozoa, and suggests that the ancestors of the current 2-cys-loop receptor types diverged from the GABA-A receptors and from each other before the bilateria-cnidaria split. Finally, combining the results from the phylogenetic analysis with those obtained from an analysis of the 2-cys-loop receptors in light of recently published hypotheses concerning the glycine binding pocket, we predict that glycine receptors are not exclusively a vertebrate-receptor type.

PubMed ID: 19554247
Article link: J Mol Evol