Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (220) GO Terms (0) Nucleotides (22) Proteins (4) Interactants (271) Wiki
ECB-GENEPAGE-23031367

Papers associated with pole



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The effect of temporary treatment of animal half embryos with lithium and the modification of this effect by simultaneous exposure to actinomycin D., de Angelis E, Runnström J., Wilhelm Roux Arch Entwickl Mech Org. September 1, 1970; 164 (3): 236-246.


Substructural analysis of the microtubule and its polymorphic forms., Fujiwara K, Tilney LG., Ann N Y Acad Sci. June 30, 1975; 253 27-50.


Spindle microtubules: thermodynamics of in vivo assembly and role in chromosome movement., Salmon ED., Ann N Y Acad Sci. June 30, 1975; 253 383-406.


[Cortical reaction in starred sturgeon eggs following fertilization and artificial activation]., Ginzburg AS, Nikiforova GP., Ontogenez. January 1, 1978; 9 (3): 228-38.


[Reproduction and sexuality of parasitic copepods of fishes. I. The reproductive apparatus of Chondracanthus angustatus Heller, 1865: anatomy, histology, and spermiogenesis (author''s transl)]., Rousset V, Raibaut A, Manier JF, Coste F., Z Parasitenkd. March 16, 1978; 55 (1): 73-89.


Cooperation of kinetochores and pole in the establishment of monopolar mitotic apparatus., Mazia D, Paweletz N, Sluder G, Finze EM., Proc Natl Acad Sci U S A. January 1, 1981; 78 (1): 377-81.


Immunochemical study of gangliosides at the cell surface of sea urchin embryos., Mikhailov AT, Prokazova NV, Zvezdina ND, Kocharov SL, Malchenko LA, Buznikov GA, Bergelson LD., Differentiation. January 1, 1981; 18 (1): 43-50.


Distribution and redistribution of pigment granules in the development of sea urchin embryos., Tanaka Y., Wilehm Roux Arch Dev Biol. September 1, 1981; 190 (5): 267-273.


Structural differences in the chromatin from compartmentalized cells of the sea urchin embryo: differential nuclease accessibility of micromere chromatin., Cognetti G, Shaw BR., Nucleic Acids Res. November 11, 1981; 9 (21): 5609-21.


Rheological properties of echinoderm eggs during cell division., Hiramoto Y., Biorheology. January 1, 1982; 19 (1/2): 71-8.


Changes in intracellular acidic compartments in sea urchin eggs after activation., Lee HC, Epel D., Dev Biol. August 1, 1983; 98 (2): 446-54.


Morphological changes during maturation of starfish oocytes: surface ultrastructure and cortical actin., Schroeder TE, Stricker SA., Dev Biol. August 1, 1983; 98 (2): 373-84.


Control mechanisms of the cell cycle: role of the spatial arrangement of spindle components in the timing of mitotic events., Sluder G, Begg DA., J Cell Biol. September 1, 1983; 97 (3): 877-86.


The centrosome cycle in the mitotic cycle of sea urchin eggs., Paweletz N, Mazia D, Finze EM., Exp Cell Res. May 1, 1984; 152 (1): 47-65.


Centriole number and the reproductive capacity of spindle poles., Sluder G, Rieder CL., J Cell Biol. March 1, 1985; 100 (3): 887-96.


Experimental separation of pronuclei in fertilized sea urchin eggs: chromosomes do not organize a spindle in the absence of centrosomes., Sluder G, Rieder CL., J Cell Biol. March 1, 1985; 100 (3): 897-903.


Experimental analysis of the reproduction of spindle poles., Sluder G, Begg DA., J Cell Sci. June 1, 1985; 76 35-51.


Microinjected carboxylated beads move predominantly poleward in sea urchin eggs., Wadsworth P., Cell Motil Cytoskeleton. January 1, 1987; 8 (4): 293-301.


Redistribution of fluorescently labeled tubulin in the mitotic apparatus of sand dollar eggs and the effects of taxol., Hamaguchi Y, Toriyama M, Sakai H, Hiramoto Y., Cell Struct Funct. February 1, 1987; 12 (1): 43-52.


Lineage and fate of each blastomere of the eight-cell sea urchin embryo., Cameron RA, Hough-Evans BR, Britten RJ, Davidson EH., Genes Dev. March 1, 1987; 1 (1): 75-85.


The origin of skeleton forming cells in the sea urchin embryo., Urben S, Nislow C, Spiegel M., Rouxs Arch Dev Biol. January 1, 1988; 197 (8): 447-456.


Determination of dorso-ventral axis in early embryos of the sea urchin, Hemicentrotus pulcherrimus., Kominami T., Dev Biol. May 1, 1988; 127 (1): 187-96.


Presence and distribution of specific prosome antigens change as a function of embryonic development and tissue-type differentiation in Pleurodeles waltl., Pal JK, Gounon P, Grossi de Sa MF, Scherrer K., J Cell Sci. August 1, 1988; 90 ( Pt 4) 555-67.


Transcripts of one of two Drosophila cyclin genes become localized in pole cells during embryogenesis., Whitfield WG, González C, Sánchez-Herrero E, Glover DM., Nature. March 23, 1989; 338 (6213): 337-40.


Sea urchin oocytes possess elaborate cortical arrays of microfilaments, microtubules, and intermediate filaments., Boyle JA, Ernst SG., Dev Biol. July 1, 1989; 134 (1): 72-84.


Altered expression of spatially regulated embryonic genes in the progeny of separated sea urchin blastomeres., Hurley DL, Angerer LM, Angerer RC., Development. July 1, 1989; 106 (3): 567-79.


The oral-aboral axis of a sea urchin embryo is specified by first cleavage., Cameron RA, Fraser SE, Britten RJ, Davidson EH., Development. August 1, 1989; 106 (4): 641-7.


Electron microscopic studies on primary mesenchyme cell ingression and gastrulation in relation to vegetal pole cell behavior in sea urchin embryos., Amemiya S., Exp Cell Res. August 1, 1989; 183 (2): 453-62.


Attachment of one spindle pole to the cortex in unequal cleavage., Dan K, Tanaka Y., Ann N Y Acad Sci. January 1, 1990; 582 108-19.


Range and stability of cell fate determination in isolated sea urchin blastomeres., Livingston BT, Wilt FH., Development. March 1, 1990; 108 (3): 403-10.


Target recognition by the archenteron during sea urchin gastrulation., Hardin J, McClay DR., Dev Biol. November 1, 1990; 142 (1): 86-102.


Roles of the Polar Cytoplasmic Region in Meiotic Divisions in Oocytes of the Sea Cucumber, Holothuria leucospilota., Maruyama YK., Biol Bull. December 1, 1990; 179 (3): 264-271.


A component of the interphase cytoskeleton is cyclically recruited into spindle poles during mitosis., Leslie RJ, Kohler E, Wilson L., Cell Motil Cytoskeleton. January 1, 1991; 19 (2): 80-90.


Reactivation of isolated mitotic apparatus: metaphase versus anaphase spindles., Palazzo RE, Lutz DA, Rebhun LI., Cell Motil Cytoskeleton. January 1, 1991; 18 (4): 304-18.


A localized zone of increased conductance progresses over the surface of the sea urchin egg during fertilization., McCulloh DH, Chambers EL., J Gen Physiol. March 1, 1991; 97 (3): 579-604.


Differential behavior of centrosomes in unequally dividing blastomeres during fourth cleavage of sea urchin embryos., Holy J, Schatten G., J Cell Sci. March 1, 1991; 98 ( Pt 3) 423-31.


Snoods: a periodic network containing cytokeratin in the cortex of starfish oocytes., Schroeder TE, Otto JJ., Dev Biol. April 1, 1991; 144 (2): 240-7.


[Cell division and the microtubular cytoskeleton]., Izutsu K., Hum Cell. June 1, 1991; 4 (2): 100-8.


Direct experimental evidence for the existence, structural basis and function of astral forces during anaphase B in vivo., Aist JR, Bayles CJ, Tao W, Berns MW., J Cell Sci. October 1, 1991; 100 ( Pt 2) 279-88.


Spindle pole centrosomes of sea urchin embryos are partially composed of material recruited from maternal stores., Holy J, Schatten G., Dev Biol. October 1, 1991; 147 (2): 343-53.


Organelle motility within mitotic asters of the fungus Nectria haematococca., Aist JR, Bayles CJ., Eur J Cell Biol. December 1, 1991; 56 (2): 358-63.


Pattern formation during gastrulation in the sea urchin embryo., McClay DR, Armstrong NA, Hardin J., Dev Suppl. January 1, 1992; 33-41.


Nuclear migration and spindle formation in the fourth cleavage of sea urchin eggs under the influence of inhibitors., Czihak G, Kojima MK., Cell Struct Funct. April 1, 1992; 17 (2): 145-50.


Evolutionary dissociation between cleavage, cell lineage and embryonic axes in sea urchin embryos., Henry JJ, Klueg KM, Raff RA., Development. April 1, 1992; 114 (4): 931-8.


Chromosomes attain a metaphase position on half-spindles in the absence of an opposing spindle pole., Leslie RJ., J Cell Sci. September 1, 1992; 103 ( Pt 1) 125-30.


Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2., Hardin J, Coffman JA, Black SD, McClay DR., Development. November 1, 1992; 116 (3): 671-85.


Cell-autonomous expression and position-dependent repression by Li+ of two zygotic genes during sea urchin early development., Ghiglione C, Lhomond G, Lepage T, Gache C., EMBO J. January 1, 1993; 12 (1): 87-96.


A complete second gut induced by transplanted micromeres in the sea urchin embryo., Ransick A, Davidson EH., Science. February 19, 1993; 259 (5098): 1134-8.


Disruption of mitotic spindle orientation in a yeast dynein mutant., Li YY, Yeh E, Hays T, Bloom K., Proc Natl Acad Sci U S A. November 1, 1993; 90 (21): 10096-100.


Do astral microtubules play a role in metaphase chromosome positioning?, Ito K, Masuda M, Fujiwara K, Sato H., Biol Cell. January 1, 1994; 82 (2-3): 95-102.

???pagination.result.page??? 1 2 3 4 5 ???pagination.result.next???