Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (99) GO Terms (0) Nucleotides (24) Proteins (12) Interactants (167) Wiki
ECB-GENEPAGE-23115451

Papers associated with LOC594353



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Identification of homologues to beta-catenin/plakoglobin/armadillo in two invertebrates, Urechis caupo and Tripneustes gratilla., Rosenthal E., Biochim Biophys Acta. June 25, 1993; 1173 (3): 337-41.


SMAP, an Smg GDS-associating protein having arm repeats and phosphorylated by Src tyrosine kinase., Shimizu K, Kawabe H, Minami S, Honda T, Takaishi K, Shirataki H, Takai Y., J Biol Chem. October 25, 1996; 271 (43): 27013-7.


Changes in the pattern of adherens junction-associated beta-catenin accompany morphogenesis in the sea urchin embryo., Miller JR, McClay DR., Dev Biol. December 15, 1997; 192 (2): 310-22.


beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo., Wikramanayake AH, Huang L, Klein WH., Proc Natl Acad Sci U S A. August 4, 1998; 95 (16): 9343-8.


Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo., Logan CY, Miller JR, Ferkowicz MJ, McClay DR., Development. January 1, 1999; 126 (2): 345-57.


Function and evolution of Otx proteins., Klein WH, Li X., Biochem Biophys Res Commun. May 10, 1999; 258 (2): 229-33.


Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients., Angerer LM, Angerer RC., Semin Cell Dev Biol. June 1, 1999; 10 (3): 327-34.


Characterization of a gene encoding a developmentally regulated winged helix transcription factor of the sea urchin Strongylocentrotus purpuratus., David ES, Luke NH, Livingston BT., Gene. August 5, 1999; 236 (1): 97-105.


Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling., Li X, Wikramanayake AH, Klein WH., Dev Biol. August 15, 1999; 212 (2): 425-39.


TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis., Vonica A, Weng W, Gumbiner BM, Venuti JM., Dev Biol. January 15, 2000; 217 (2): 230-43.


Animal-vegetal axis patterning mechanisms in the early sea urchin embryo., Angerer LM, Angerer RC., Dev Biol. February 1, 2000; 218 (1): 1-12.


Involvement of Tcf/Lef in establishing cell types along the animal-vegetal axis of sea urchins., Huang L, Li X, El-Hodiri HM, Dayal S, Wikramanayake AH, Klein WH., Dev Genes Evol. February 1, 2000; 210 (2): 73-81.


A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo., McClay DR, Peterson RE, Range RC, Winter-Vann AM, Ferkowicz MJ., Development. December 1, 2000; 127 (23): 5113-22.


Purification of GSK-3 by affinity chromatography on immobilized axin., Primot A, Baratte B, Gompel M, Borgne A, Liabeuf S, Romette JL, Jho EH, Costantini F, Meijer L., Protein Expr Purif. December 1, 2000; 20 (3): 394-404.


SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos., Howard EW, Newman LA, Oleksyn DW, Angerer RC, Angerer LM., Development. February 1, 2001; 128 (3): 365-75.


Ca(2+) in specification of vegetal cell fate in early sea urchin embryos., Yazaki I., J Exp Biol. March 1, 2001; 204 (Pt 5): 823-34.


Bep4 protein is involved in patterning along the animal-vegetal axis in the Paracentrotus lividus embryo., Romancino DP, Montana G, Dalmazio S, Di Carlo M., Dev Biol. June 1, 2001; 234 (1): 107-19.


LvNotch signaling plays a dual role in regulating the position of the ectoderm-endoderm boundary in the sea urchin embryo., Sherwood DR, McClay DR., Development. June 1, 2001; 128 (12): 2221-32.


Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes., Angerer LM, Oleksyn DW, Levine AM, Li X, Klein WH, Angerer RC., Development. November 1, 2001; 128 (22): 4393-404.


The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus., Gross JM, McClay DR., Dev Biol. November 1, 2001; 239 (1): 132-47.


Molecular patterning along the sea urchin animal-vegetal axis., Brandhorst BP, Klein WH., Int Rev Cytol. January 1, 2002; 213 183-232.


Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes., Holland LZ., Dev Biol. January 15, 2002; 241 (2): 209-28.


New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization., Ransick A, Rast JP, Minokawa T, Calestani C, Davidson EH., Dev Biol. June 1, 2002; 246 (1): 132-47.


A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo., Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Schilstra MJ, Clarke PJ, Rust AG, Pan Z, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H., Dev Biol. June 1, 2002; 246 (1): 162-90.


A regulatory gene network that directs micromere specification in the sea urchin embryo., Oliveri P, Carrick DM, Davidson EH., Dev Biol. June 1, 2002; 246 (1): 209-28.


T-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo., Fuchikami T, Mitsunaga-Nakatsubo K, Amemiya S, Hosomi T, Watanabe T, Kurokawa D, Kataoka M, Harada Y, Satoh N, Kusunoki S, Takata K, Shimotori T, Yamamoto T, Sakamoto N, Shimada H, Akasaka K., Development. November 1, 2002; 129 (22): 5205-16.


Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions., Angerer LM, Angerer RC., Curr Top Dev Biol. January 1, 2003; 53 159-98.


Nuclear localization of beta-catenin in vegetal pole cells during early embryogenesis of the starfish Asterina pectinifera., Miyawaki K, Yamamoto M, Saito K, Saito S, Kobayashi N, Matsuda S., Dev Growth Differ. April 1, 2003; 45 (2): 121-8.


Polycyclic aromatic hydrocarbons disrupt axial development in sea urchin embryos through a beta-catenin dependent pathway., Pillai MC, Vines CA, Wikramanayake AH, Cherr GN., Toxicology. April 15, 2003; 186 (1-2): 93-108.


LvTbx2/3: a T-box family transcription factor involved in formation of the oral/aboral axis of the sea urchin embryo., Gross JM, Peterson RE, Wu SY, McClay DR., Development. May 1, 2003; 130 (9): 1989-99.


Activation of pmar1 controls specification of micromeres in the sea urchin embryo., Oliveri P, Davidson EH, McClay DR., Dev Biol. June 1, 2003; 258 (1): 32-43.


Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo., Ettensohn CA, Illies MR, Oliveri P, De Jong DL., Development. July 1, 2003; 130 (13): 2917-28.              


Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos., Kenny AP, Oleksyn DW, Newman LA, Angerer RC, Angerer LM., Dev Biol. September 15, 2003; 261 (2): 412-25.


A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets., Röttinger E, Besnardeau L, Lepage T., Development. March 1, 2004; 131 (5): 1075-87.


Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo., Takacs CM, Amore G, Oliveri P, Poustka AJ, Wang D, Burke RD, Peterson KJ., Dev Biol. May 1, 2004; 269 (1): 152-64.


Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled., Weitzel HE, Illies MR, Byrum CA, Xu R, Wikramanayake AH, Ettensohn CA., Development. June 1, 2004; 131 (12): 2947-56.


Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages., Wikramanayake AH, Peterson R, Chen J, Huang L, Bince JM, McClay DR, Klein WH., Genesis. July 1, 2004; 39 (3): 194-205.


A genetic regulatory network for Xenopus mesendoderm formation., Loose M, Patient R., Dev Biol. July 15, 2004; 271 (2): 467-78.


Structure, regulation, and function of micro1 in the sea urchin Hemicentrotus pulcherrimus., Nishimura Y, Sato T, Morita Y, Yamazaki A, Akasaka K, Yamaguchi M., Dev Genes Evol. November 1, 2004; 214 (11): 525-36.


SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover., Angerer LM, Newman LA, Angerer RC., Development. March 1, 2005; 132 (5): 999-1008.


LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo., Range RC, Venuti JM, McClay DR., Dev Biol. March 1, 2005; 279 (1): 252-67.


Identification of cis-regulatory elements involved in transcriptional regulation of the sea urchin SpFoxB gene., Fung ES, Thurm C, Reuille R, Brede B, Livingston BT., Dev Growth Differ. September 1, 2005; 47 (7): 461-70.


cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network., Minokawa T, Wikramanayake AH, Davidson EH., Dev Biol. December 15, 2005; 288 (2): 545-58.


Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos., Yaguchi S, Yaguchi J, Burke RD., Development. June 1, 2006; 133 (12): 2337-46.


Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus., Röttinger E, Besnardeau L, Lepage T., Gene Expr Patterns. October 1, 2006; 6 (8): 864-72.


Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo., Röttinger E, Croce J, Lhomond G, Besnardeau L, Gache C, Lepage T., Development. November 1, 2006; 133 (21): 4341-53.


The emergence of pattern in embryogenesis: regulation of beta-catenin localization during early sea urchin development., Ettensohn CA., Sci STKE. November 14, 2006; 2006 (361): pe48.


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G., Genome Biol. January 1, 2007; 8 (5): R85.                


Analysis of dishevelled localization and function in the early sea urchin embryo., Leonard JD, Ettensohn CA., Dev Biol. June 1, 2007; 306 (1): 50-65.


Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1., Range R, Lapraz F, Quirin M, Marro S, Besnardeau L, Lepage T., Development. October 1, 2007; 134 (20): 3649-64.

???pagination.result.page??? 1 2 ???pagination.result.next???