Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (93) GO Terms (0) Nucleotides (67) Proteins (58) Interactants (148) Wiki
ECB-GENEPAGE-23171518

Papers associated with LOC575170



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Activation of pmar1 controls specification of micromeres in the sea urchin embryo., Oliveri P, Davidson EH, McClay DR., Dev Biol. June 1, 2003; 258 (1): 32-43.


Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks., Amore G, Yavrouian RG, Peterson KJ, Ransick A, McClay DR, Davidson EH., Dev Biol. September 1, 2003; 261 (1): 55-81.


Developmental gene regulatory network architecture across 500 million years of echinoderm evolution., Hinman VF, Nguyen AT, Cameron RA, Davidson EH., Proc Natl Acad Sci U S A. November 11, 2003; 100 (23): 13356-61.


Gene regulatory network analysis in sea urchin embryos., Oliveri P, Davidson EH., Methods Cell Biol. January 1, 2004; 74 775-94.


An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network., Yuh CH, Dorman ER, Howard ML, Davidson EH., Dev Biol. May 15, 2004; 269 (2): 536-51.


A genetic regulatory network for Xenopus mesendoderm formation., Loose M, Patient R., Dev Biol. July 15, 2004; 271 (2): 467-78.


SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis., Otim O, Amore G, Minokawa T, McClay DR, Davidson EH., Dev Biol. September 15, 2004; 273 (2): 226-43.


R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres., Revilla-i-Domingo R, Minokawa T, Davidson EH., Dev Biol. October 15, 2004; 274 (2): 438-51.


A systems biology approach to developmental toxicology., Cummings A, Kavlock R., Reprod Toxicol. January 1, 2005; 19 (3): 281-90.


LvGroucho and nuclear beta-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo., Range RC, Venuti JM, McClay DR., Dev Biol. March 1, 2005; 279 (1): 252-67.


Endomesoderm specification in Caenorhabditis elegans and other nematodes., Maduro MF., Bioessays. October 1, 2006; 28 (10): 1010-22.


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY, McClay DR., Development. March 1, 2007; 134 (6): 1061-70.


Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network., Ettensohn CA, Kitazawa C, Cheers MS, Leonard JD, Sharma T., Development. September 1, 2007; 134 (17): 3077-87.


A gene regulatory network subcircuit drives a dynamic pattern of gene expression., Smith J, Theodoris C, Davidson EH., Science. November 2, 2007; 318 (5851): 794-7.


Evolutionary plasticity of developmental gene regulatory network architecture., Hinman VF, Davidson EH., Proc Natl Acad Sci U S A. December 4, 2007; 104 (49): 19404-9.


Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins., Hinman VF, Nguyen A, Davidson EH., Dev Biol. December 15, 2007; 312 (2): 584-95.


A protocol for unraveling gene regulatory networks., Materna SC, Oliveri P., Nat Protoc. January 1, 2008; 3 (12): 1876-87.


Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution., Gao F, Davidson EH., Proc Natl Acad Sci U S A. April 22, 2008; 105 (16): 6091-6.


Global regulatory logic for specification of an embryonic cell lineage., Oliveri P, Tu Q, Davidson EH., Proc Natl Acad Sci U S A. April 22, 2008; 105 (16): 5955-62.


Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo., Wu SY, Yang YP, McClay DR., Dev Biol. July 15, 2008; 319 (2): 406-15.


Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis., Ettensohn CA., Development. January 1, 2009; 136 (1): 11-21.


Genomic control of patterning., Peter IS, Davidson EH., Int J Dev Biol. January 1, 2009; 53 (5-6): 707-16.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ, Angerer RC, Angerer LM., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms., Hinman VF, Yankura KA, McCauley BS., Biochim Biophys Acta. April 1, 2009; 1789 (4): 326-32.


Gene regulatory networks for ectoderm specification in sea urchin embryos., Su YH., Biochim Biophys Acta. April 1, 2009; 1789 (4): 261-7.


A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo., Su YH, Li E, Geiss GK, Longabaugh WJ, Krämer A, Davidson EH., Dev Biol. May 15, 2009; 329 (2): 410-21.


Building developmental gene regulatory networks., Li E, Davidson EH., Birth Defects Res C Embryo Today. June 1, 2009; 87 (2): 123-30.


Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network., Kühn C, Wierling C, Kühn A, Klipp E, Panopoulou G, Lehrach H, Poustka AJ., BMC Syst Biol. August 23, 2009; 3 83.                      


Modularity and design principles in the sea urchin embryo gene regulatory network., Peter IS, Davidson EH., FEBS Lett. December 17, 2009; 583 (24): 3948-58.


Practical computational methods for regulatory genomics: a cisGRN-Lexicon and cisGRN-browser for gene regulatory networks., Istrail S, Tarpine R, Schutter K, Aguiar D., Methods Mol Biol. January 1, 2010; 674 369-99.


Functional cis-regulatory genomics for systems biology., Nam J, Dong P, Tarpine R, Istrail S, Davidson EH., Proc Natl Acad Sci U S A. February 23, 2010; 107 (8): 3930-5.


Activation of the skeletogenic gene regulatory network in the early sea urchin embryo., Sharma T, Ettensohn CA., Development. April 1, 2010; 137 (7): 1149-57.


The gene regulatory network basis of the "community effect," and analysis of a sea urchin embryo example., Bolouri H, Davidson EH., Dev Biol. April 15, 2010; 340 (2): 170-8.


The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage., Peter IS, Davidson EH., Dev Biol. April 15, 2010; 340 (2): 188-99.


A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos., McCauley BS, Weideman EP, Hinman VF., Dev Biol. April 15, 2010; 340 (2): 200-8.


Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase., Calestani C, Rogers DJ., Dev Biol. April 15, 2010; 340 (2): 249-55.


Information processing at the foxa node of the sea urchin endomesoderm specification network., de-Leon SB, Davidson EH., Proc Natl Acad Sci U S A. June 1, 2010; 107 (22): 10103-8.


Conserved early expression patterns of micromere specification genes in two echinoid species belonging to the orders clypeasteroida and echinoida., Yamazaki A, Furuzawa Y, Yamaguchi M., Dev Dyn. December 1, 2010; 239 (12): 3391-403.


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      


The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network., Chen JH, Luo YJ, Su YH., Dev Dyn. January 1, 2011; 240 (1): 250-60.


The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network., Rho HK, McClay DR., Development. March 1, 2011; 138 (5): 937-45.


Regulative deployment of the skeletogenic gene regulatory network during sea urchin development., Sharma T, Ettensohn CA., Development. June 1, 2011; 138 (12): 2581-90.


Wnt6 activates endoderm in the sea urchin gene regulatory network., Croce J, Range R, Wu SY, Miranda E, Lhomond G, Peng JC, Lepage T, McClay DR., Development. August 1, 2011; 138 (15): 3297-306.


Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus., Damle S, Davidson EH., Dev Biol. September 15, 2011; 357 (2): 505-17.


Synthetic in vivo validation of gene network circuitry., Damle SS, Davidson EH., Proc Natl Acad Sci U S A. January 31, 2012; 109 (5): 1548-53.


The genomic regulatory control of skeletal morphogenesis in the sea urchin., Rafiq K, Cheers MS, Ettensohn CA., Development. February 1, 2012; 139 (3): 579-90.


Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis., Ransick A, Davidson EH., Dev Biol. April 15, 2012; 364 (2): 259-67.


Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions., Hammond LM, Hofmann GE., J Exp Biol. July 15, 2012; 215 (Pt 14): 2445-54.


Predictive computation of genomic logic processing functions in embryonic development., Peter IS, Faure E, Davidson EH., Proc Natl Acad Sci U S A. October 9, 2012; 109 (41): 16434-42.


Networking development by Boolean logic., Tu S, Pederson T, Weng Z., Nucleus. January 1, 2013; 4 (2): 89-91.

???pagination.result.page??? 1 2 ???pagination.result.next???