Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (27) GO Terms (4) Nucleotides (27) Proteins (21) Interactants (125) Wiki
ECB--23033622

Papers associated with ets1



Limit to papers also referencing gene:

Results 1 - 27 of 27 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling., Shashikant T, Khor JM, Ettensohn CA., BMC Genomics. March 20, 2018; 19 (1): 206.            


Thyroid Hormones Accelerate Initiation of Skeletogenesis via MAPK (ERK1/2) in Larval Sea Urchins (Strongylocentrotus purpuratus)., Taylor E, Heyland A., Front Endocrinol (Lausanne). January 1, 2018; 9 439.                          


Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks., Dylus DV, Czarkwiani A, Stångberg J, Ortega-Martinez O, Dupont S, Oliveri P., Evodevo. January 1, 2016; 7 2.            


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C, Pai CY, Su YH, Arnone MI., Elife. July 28, 2015; 4                                       


Expession patterns of mesenchyme specification genes in two distantly related echinoids, Glyptocidaris crenularis and Echinocardium cordatum., Yamazaki A, Minokawa T., Gene Expr Patterns. March 1, 2015; 17 (2): 87-97.


Dose-dependent nuclear β-catenin response segregates endomesoderm along the sea star primary axis., McCauley BS, Akyar E, Saad HR, Hinman VF., Development. January 1, 2015; 142 (1): 207-17.


Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate., Yamazaki A, Kidachi Y, Yamaguchi M, Minokawa T., Development. July 1, 2014; 141 (13): 2669-79.


Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition., Saunders LR, McClay DR., Development. April 1, 2014; 141 (7): 1503-13.


Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins., Rafiq K, Shashikant T, McManus CJ, Ettensohn CA., Development. February 1, 2014; 141 (4): 950-61.


Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis., Czarkwiani A, Dylus DV, Oliveri P., Gene Expr Patterns. December 1, 2013; 13 (8): 464-72.        


Genome-wide patterns of codon bias are shaped by natural selection in the purple sea urchin, Strongylocentrotus purpuratus., Kober KM, Pogson GH., G3 (Bethesda). July 8, 2013; 3 (7): 1069-83.          


Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus., Damle S, Davidson EH., Dev Biol. September 15, 2011; 357 (2): 505-17.


The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network., Rho HK, McClay DR., Development. March 1, 2011; 138 (5): 937-45.


Conserved early expression patterns of micromere specification genes in two echinoid species belonging to the orders clypeasteroida and echinoida., Yamazaki A, Furuzawa Y, Yamaguchi M., Dev Dyn. December 1, 2010; 239 (12): 3391-403.


Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons., Koga H, Matsubara M, Fujitani H, Miyamoto N, Komatsu M, Kiyomoto M, Akasaka K, Wada H., Dev Genes Evol. September 1, 2010; 220 (3-4): 107-15.


Activation of the skeletogenic gene regulatory network in the early sea urchin embryo., Sharma T, Ettensohn CA., Development. April 1, 2010; 137 (7): 1149-57.


The cis-regulatory system of the tbrain gene: Alternative use of multiple modules to promote skeletogenic expression in the sea urchin embryo., Wahl ME, Hahn J, Gora K, Davidson EH, Oliveri P., Dev Biol. November 15, 2009; 335 (2): 428-41.


Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network., Kühn C, Wierling C, Kühn A, Klipp E, Panopoulou G, Lehrach H, Poustka AJ., BMC Syst Biol. August 23, 2009; 3 83.                      


Structure-function correlation of micro1 for micromere specification in sea urchin embryos., Yamazaki A, Ki S, Kokubo T, Yamaguchi M., Mech Dev. January 1, 2009; 126 (8-9): 611-23.


The surprising complexity of the transcriptional regulation of the spdri gene reveals the existence of new linkages inside sea urchin''s PMC and Oral Ectoderm Gene Regulatory Networks., Mahmud AA, Amore G., Dev Biol. October 15, 2008; 322 (2): 425-34.


A new method, using cis-regulatory control, for blocking embryonic gene expression., Smith J, Davidson EH., Dev Biol. June 15, 2008; 318 (2): 360-5.


Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus)., Rizzo F, Fernandez-Serra M, Squarzoni P, Archimandritis A, Arnone MI., Dev Biol. December 1, 2006; 300 (1): 35-48.


cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo., Amore G, Davidson EH., Dev Biol. May 15, 2006; 293 (2): 555-64.


SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis., Otim O, Amore G, Minokawa T, McClay DR, Davidson EH., Dev Biol. September 15, 2004; 273 (2): 226-43.


A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets., Röttinger E, Besnardeau L, Lepage T., Development. March 1, 2004; 131 (5): 1075-87.


Molecular analysis of the ets genes and their products., Watson DK, Ascione R, Papas TS., Crit Rev Oncog. January 1, 1990; 1 (4): 409-36.


Mammalian ets-1 and ets-2 genes encode highly conserved proteins., Watson DK, McWilliams MJ, Lapis P, Lautenberger JA, Schweinfest CW, Papas TS., Proc Natl Acad Sci U S A. November 1, 1988; 85 (21): 7862-6.

Page(s): 1