Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (15) GO Terms (6) Nucleotides (12) Proteins (8) Interactants (85) Wiki
ECB-GENEPAGE-23054148

Papers associated with sox2



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning., Anishchenko E, Arnone MI, D'Aniello S., Evodevo. January 22, 2018; 9 5.          


cis-Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo., Barsi JC, Davidson EH., Dev Biol. January 1, 2016; 409 (1): 310-318.


Geometric control of ciliated band regulatory states in the sea urchin embryo., Barsi JC, Li E, Davidson EH., Development. March 1, 2015; 142 (5): 953-61.


Expression of pluripotency factors in echinoderm regeneration., Mashanov VS, Zueva OR, García-Arrarás JE., Cell Tissue Res. February 1, 2015; 359 (2): 521-536.


Direct development of neurons within foregut endoderm of sea urchin embryos., Wei Z, Angerer RC, Angerer LM., Proc Natl Acad Sci U S A. May 31, 2011; 108 (22): 9143-7.


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ, Angerer RC, Angerer LM., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1., Range R, Lapraz F, Quirin M, Marro S, Besnardeau L, Lepage T., Development. October 1, 2007; 134 (20): 3649-64.


SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover., Angerer LM, Newman LA, Angerer RC., Development. March 1, 2005; 132 (5): 999-1008.


Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos., Kenny AP, Oleksyn DW, Newman LA, Angerer RC, Angerer LM., Dev Biol. September 15, 2003; 261 (2): 412-25.


Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks., Amore G, Yavrouian RG, Peterson KJ, Ransick A, McClay DR, Davidson EH., Dev Biol. September 1, 2003; 261 (1): 55-81.


SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos., Howard EW, Newman LA, Oleksyn DW, Angerer RC, Angerer LM., Development. February 1, 2001; 128 (3): 365-75.


SpSoxB1 serves an essential architectural function in the promoter SpAN, a tolloid/BMP1-related gene., Kenny AP, Angerer LM, Angerer RC., Gene Expr. January 1, 2001; 9 (6): 283-90.


Sox regulates transcription of the sea urchin arylsulfatase gene., Ogawa M, Akasaka K, Mitsunaga-Nakatsubo K, Shimada H., Dev Growth Differ. August 1, 2000; 42 (4): 429-35.


SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres., Kenny AP, Kozlowski D, Oleksyn DW, Angerer LM, Angerer RC., Development. December 1, 1999; 126 (23): 5473-83.

???pagination.result.page??? 1