Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (11969) GO Terms (0) Nucleotides (8) Proteins (2) Interactants (1441) Wiki
ECB--23018802

Papers associated with LOC100887844 (and pole)



???displayGene.coCitedPapers???
Show all LOC100887844 papers

???pagination.result.count???

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins., Poon J, Fries A, Wessel GM, Yajima M., Nat Commun. August 22, 2019; 10 (1): 3779.                  


Is reproductive strategy a key factor in understanding the evolutionary history of Southern Ocean Asteroidea (Echinodermata)?, Moreau C, Danis B, Jossart Q, Eléaume M, Sands C, Achaz G, Agüera A, Saucède T., Ecol Evol. August 1, 2019; 9 (15): 8465-8478.        


Cell rearrangement induced by filopodial tension accounts for the late phase of convergent extension in the sea urchin archenteron., Hardin J, Weliky M., Mol Biol Cell. July 22, 2019; 30 (16): 1911-1919.          


cis-Regulatory analysis for later phase of anterior neuroectoderm-specific foxQ2 expression in sea urchin embryos., Yamazaki A, Yamamoto A, Yaguchi J, Yaguchi S., Genesis. June 1, 2019; 57 (6): e23302.


Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa., Cary GA, Cary GA, Wolff A, Zueva O, Pattinato J, Hinman VF., BMC Biol. February 22, 2019; 17 (1): 16.                  


Contributions of suboolemmal acidic vesicles and microvilli to the intracellular Ca2+ increase in the sea urchin eggs at fertilization., Vasilev F, Limatola N, Chun JT, Santella L., Int J Biol Sci. January 29, 2019; 15 (4): 757-775.                  


Early development of the feeding larva of the sea urchin Heliocidaris tuberculata: role of the small micromeres., Morris VB, Kable E, Koop D, Cisternas P, Byrne M., Dev Genes Evol. January 1, 2019; 229 (1): 1-12.


Visualizing egg and embryonic polarity., Smith LT, Wikramanayake AH., Methods Cell Biol. January 1, 2019; 150 251-268.


Deep-sea megabenthos communities of the Eurasian Central Arctic are influenced by ice-cover and sea-ice algal falls., Rybakova E, Kremenetskaia A, Vedenin A, Boetius A, Gebruk A., PLoS One. January 1, 2019; 14 (7): e0211009.              


Control of nucleus positioning in mouse oocytes., Almonacid M, Terret ME, Verlhac MH., Semin Cell Dev Biol. October 1, 2018; 82 34-40.


MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo., Molina MD, Quirin M, Haillot E, De Crozé N, Range R, Rouel M, Jimenez F, Amrouche R, Chessel A, Lepage T., PLoS Genet. September 17, 2018; 14 (9): e1007621.                


The TMEM16A channel mediates the fast polyspermy block in Xenopus laevis., Wozniak KL, Phelps WA, Tembo M, Lee MT, Carlson AE., J Gen Physiol. September 3, 2018; 150 (9): 1249-1259.          


A novel gene''s role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos., Khadka A, Martínez-Bartolomé M, Burr SD, Range RC., Evodevo. January 22, 2018; 9 1.            


Transforming a transcription factor., Burke RD., Elife. January 8, 2018; 7   


Thyroid Hormones Accelerate Initiation of Skeletogenesis via MAPK (ERK1/2) in Larval Sea Urchins (Strongylocentrotus purpuratus)., Taylor E, Heyland A., Front Endocrinol (Lausanne). January 1, 2018; 9 439.                          


Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes., Burguera D, Marquez Y, Racioppi C, Permanyer J, Torres-Méndez A, Esposito R, Albuixech-Crespo B, Fanlo L, D'Agostino Y, Gohr A, Navas-Perez E, Riesgo A, Cuomo C, Benvenuto G, Christiaen LA, Martí E, D'Aniello S, Spagnuolo A, Ristoratore F, Arnone MI, Garcia-Fernàndez J, Irimia M., Nat Commun. November 27, 2017; 8 (1): 1799.              


A cdk1 gradient guides surface contraction waves in oocytes., Bischof J, Brand CA, Somogyi K, Májer I, Thome S, Mori M, Schwarz US, Lénárt P., Nat Commun. October 11, 2017; 8 (1): 849.        


A key role for foxQ2 in anterior head and central brain patterning in insects., Kitzmann P, Weißkopf M, Schacht MI, Bucher G., Development. August 15, 2017; 144 (16): 2969-2981.                    


A Conserved Role for VEGF Signaling in Specification of Homologous Mesenchymal Cell Types Positioned at Spatially Distinct Developmental Addresses in Early Development of Sea Urchins., Erkenbrack EM, Petsios E., J Exp Zool B Mol Dev Evol. July 1, 2017; 328 (5): 423-432.


Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos., Famiglietti AL, Wei Z, Beres TM, Milac AL, Tran DT, Patel D, Angerer RC, Angerer LM, Tabak LA., PLoS One. April 17, 2017; 12 (4): e0176479.            


An Intronic cis-Regulatory Element Is Crucial for the Alpha Tubulin Pl-Tuba1a Gene Activation in the Ciliary Band and Animal Pole Neurogenic Domains during Sea Urchin Development., Costa S, Nicosia A, Cuttitta A, Gianguzza F, Ragusa MA., PLoS One. January 1, 2017; 12 (1): e0170969.                


Morphological diversity of blastula formation and gastrulation in temnopleurid sea urchins., Kitazawa C, Fujii T, Egusa Y, Komatsu M, Yamanaka A., Biol Open. November 15, 2016; 5 (11): 1555-1566.                    


Cilia are required for asymmetric nodal induction in the sea urchin embryo., Tisler M, Wetzel F, Mantino S, Kremnyov S, Thumberger T, Schweickert A, Blum M, Vick P., BMC Dev Biol. August 23, 2016; 16 (1): 28.        


Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos., Krupke OA, Zysk I, Mellott DO, Burke RD., Elife. July 30, 2016; 5               


Acquisition of the dorsal structures in chordate amphioxus., Morov AR, Ukizintambara T, Sabirov RM, Yasui K., Open Biol. June 1, 2016; 6 (6):                 


An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo., Range RC, Wei Z., Development. May 1, 2016; 143 (9): 1523-33.


A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage., Faure E, Savy T, Rizzi B, Melani C, Stašová O, Fabrèges D, Špir R, Hammons M, Čúnderlík R, Recher G, Lombardot B, Duloquin L, Colin I, Kollár J, Desnoulez S, Affaticati P, Maury B, Boyreau A, Nief JY, Calvat P, Vernier P, Frain M, Lutfalla G, Kergosien Y, Suret P, Remešíková M, Doursat R, Sarti A, Mikula K, Peyriéras N, Bourgine P., Nat Commun. February 25, 2016; 7 8674.            


A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms., Lapraz F, Haillot E, Lepage T., Nat Commun. October 1, 2015; 6 8434.                    


Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo., Martik ML, McClay DR., Elife. September 24, 2015; 4                               


The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo., Haillot E, Molina MD, Lapraz F, Lepage T., PLoS Biol. September 9, 2015; 13 (9): e1002247.                      


Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C, Pai CY, Su YH, Arnone MI., Elife. July 28, 2015; 4                                       


A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning., Saina M, Busengdal H, Sinigaglia C, Petrone L, Oliveri P, Rentzsch F, Benton R., Nat Commun. February 18, 2015; 6 6243.          


Molecular characterization of the apical organ of the anthozoan Nematostella vectensis., Sinigaglia C, Busengdal H, Lerner A, Oliveri P, Rentzsch F., Dev Biol. February 1, 2015; 398 (1): 120-33.                        


Dose-dependent nuclear β-catenin response segregates endomesoderm along the sea star primary axis., McCauley BS, Akyar E, Saad HR, Hinman VF., Development. January 1, 2015; 142 (1): 207-17.


Development of ciliary bands in larvae of the living isocrinid sea lily Metacrinus rotundus., Amemiya S, Hibino T, Nakano H, Yamaguchi M, Kuraishi R, Kiyomoto M., Acta Zool. January 1, 2015; 96 (1): 36-43.          


Peripheral sea-fan retinal neovascularization as a manifestation of chronic rhegmatogenous retinal detachment and surgical management., Georgalas I, Paraskevopoulos T, Symmeonidis C, Petrou P, Koutsandrea C., BMC Ophthalmol. September 23, 2014; 14 112.        


Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ, Yamaguchi E, Seaver EC., Evodevo. June 17, 2014; 5 39.          


Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha)., Børve A, Hejnol A., Front Zool. May 9, 2014; 11 50.                  


Specification and positioning of the anterior neuroectoderm in deuterostome embryos., Range R., Genesis. March 1, 2014; 52 (3): 222-34.


Expression pattern of vascular endothelial growth factor 2 during sea urchin development., Kipryushina YO, Yakovlev KV, Kulakova MA, Odintsova NA., Gene Expr Patterns. December 1, 2013; 13 (8): 402-6.


Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA, Wikramanayake AH., Evodevo. November 4, 2013; 4 (1): 31.        


Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation., Adomako-Ankomah A, Ettensohn CA., Development. October 1, 2013; 140 (20): 4214-25.


A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions., Kaul-Strehlow S, Stach T., Front Zool. September 6, 2013; 10 (1): 53.                            


Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system., Bishop CD, MacNeil KE, Patel D, Taylor VJ, Burke RD., Dev Biol. May 1, 2013; 377 (1): 236-44.


Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos., Range RC, Angerer RC, Angerer LM., PLoS Biol. January 1, 2013; 11 (1): e1001467.              


Unc-5/netrin-mediated axonal projection during larval serotonergic nervous system formation in the sea urchin, Hemicentrotus pulcherrimus., Abe K, Katow T, Ooka S, Katow H., Int J Dev Biol. January 1, 2013; 57 (5): 415-25.


Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling., Peng CJ, Wikramanayake AH., PLoS One. January 1, 2013; 8 (11): e80693.          


Bilateral proliferative retinopathy as the initial presentation of chronic myeloid leukemia., Macedo MS, Figueiredo AR, Ferreira NN, Barbosa IM, Furtado MJ, Correia NF, Gomes MP, Lume MR, Menéres MJ, Santos MM, Meireles MA., Middle East Afr J Ophthalmol. January 1, 2013; 20 (4): 353-6.      


Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin., Yajima M, Wessel GM., Development. October 1, 2012; 139 (20): 3786-94.


Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms., McCauley BS, Wright EP, Exner C, Kitazawa C, Hinman VF., Evodevo. August 9, 2012; 3 (1): 17.          

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???