Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (44) GO Terms (0) Nucleotides (7) Proteins (1) Interactants (54) Wiki
ECB-GENEPAGE-23088321

Papers associated with LOC762863



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Effects of aerial exposure on oxidative stress, antioxidant and non-specific immune responses of juvenile sea cucumber Apostichopus japonicus under low temperature., Cui Y, Hou Z, Ren Y, Men X, Zheng B, Liu P, Xia B., Fish Shellfish Immunol. June 1, 2020; 101 58-65.


Non-specific immune factors differences in coelomic fluid from polian vesicle and coelom of Apostichopus japonicus, and their early response after evisceration., Ren Y, Zhang J, Wang Y, Chen J, Liang C, Li R, Li Q., Fish Shellfish Immunol. March 1, 2020; 98 160-166.


Ancient role of vasopressin/oxytocin-type neuropeptides as regulators of feeding revealed in an echinoderm., Odekunle EA, Semmens DC, Martynyuk N, Tinoco AB, Garewal AK, Patel RR, Blowes LM, Zandawala M, Delroisse J, Slade SE, Scrivens JH, Egertová M, Elphick MR., BMC Biol. July 31, 2019; 17 (1): 60.                  


Immunomodulatory effects of chicken egg yolk antibodies (IgY) against experimental Shewanella marisflavi AP629 infections in sea cucumbers (Apostichopus japonicus)., Xu L, Xu Y, He L, Zhang M, Wang L, Li Z, Li X., Fish Shellfish Immunol. January 1, 2019; 84 108-119.


Structural mapping of fluorescently-tagged, functional nhTMEM16 scramblase in a lipid bilayer., Andra KK, Dorsey S, Royer CA, Menon AK., J Biol Chem. August 3, 2018; 293 (31): 12248-12258.


The evolution and nomenclature of GnRH-type and corazonin-type neuropeptide signaling systems., Zandawala M, Tian S, Elphick MR., Gen Comp Endocrinol. August 1, 2018; 264 64-77.


Regulation of growth, intestinal microbiota, non-specific immune response and disease resistance of sea cucumber Apostichopus japonicus (Selenka) in biofloc systems., Chen J, Ren Y, Li Y, Xia B., Fish Shellfish Immunol. June 1, 2018; 77 175-186.


The Effects of Sub-lethal Dietary Mercury on Growth Performance, Bioaccumulation, and Activities of Antioxidant Enzymes in Sea Cucumber, Apostichopus japonicus., Li Z, Ren T, Han Y, Jiang Z, Hu Y, Bai Z, Wang L, Ding J., Bull Environ Contam Toxicol. May 1, 2018; 100 (5): 683-689.


Effects of dietary supplementation of four strains of lactic acid bacteria on growth, immune-related response and genes expression of the juvenile sea cucumber Apostichopus japonicus Selenka., Li C, Ren Y, Jiang S, Zhou S, Zhao J, Wang R, Li Y., Fish Shellfish Immunol. March 1, 2018; 74 69-75.


Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka)., Chen J, Ren Y, Wang G, Xia B, Li Y., Fish Shellfish Immunol. January 1, 2018; 72 143-152.


Impact of hypoxia stress on the physiological responses of sea cucumber Apostichopus japonicus: respiration, digestion, immunity and oxidative damage., Huo D, Sun L, Ru X, Zhang L, Lin C, Liu S, Xin X, Yang H., PeerJ. January 1, 2018; 6 e4651.                  


Effects of Tin on Enzyme Activity in Holothuria grisea (Echinodermata: Holothuroidea)., Pereira TM, Mattar LP, Pereira ER, Merçon J, da Silva AG, Cruz ZM., Bull Environ Contam Toxicol. May 1, 2017; 98 (5): 607-611.


Comparative analysis of immunocompetence between females and males in the sea cucumber Apostichopus japonicus., Jiang J, Zhou Z, Dong Y, Gao S, Sun H, Chen Z, Yang A, Su H., Fish Shellfish Immunol. April 1, 2017; 63 438-443.


Effects of tussah immunoreactive substances on growth, immunity, disease resistance against Vibrio splendidus and gut microbiota profile of Apostichopus japonicus., Ma S, Sun Y, Wang F, Mi R, Wen Z, Li X, Meng N, Li Y, Du X, Li S., Fish Shellfish Immunol. April 1, 2017; 63 471-479.


Use of phages to control Vibrio splendidus infection in the juvenile sea cucumber Apostichopus japonicus., Li Z, Li X, Zhang J, Wang X, Wang L, Cao Z, Xu Y., Fish Shellfish Immunol. July 1, 2016; 54 302-11.


Urbilaterian origin of paralogous GnRH and corazonin neuropeptide signalling pathways., Tian S, Zandawala M, Beets I, Baytemur E, Slade SE, Scrivens JH, Elphick MR., Sci Rep. June 28, 2016; 6 28788.      


Effects of potential probiotic Bacillus cereus EN25 on growth, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus., Zhao Y, Yuan L, Wan J, Sun Z, Wang Y, Sun H., Fish Shellfish Immunol. February 1, 2016; 49 237-42.


Effects of dietary nucleotides on growth, non-specific immune response and disease resistance of sea cucumber Apostichopus japonicas., Wei Z, Yi L, Xu W, Zhou H, Zhang Y, Zhang W, Mai K., Fish Shellfish Immunol. November 1, 2015; 47 (1): 1-6.


Dietary Cordyceps militaris protects against Vibrio splendidus infection in sea cucumber Apostichopus japonicus., Sun Y, Du X, Li S, Wen Z, Li Y, Li X, Meng N, Mi R, Ma S, Sun A., Fish Shellfish Immunol. August 1, 2015; 45 (2): 964-71.


Improving the quality of Laminaria japonica-based diet for Apostichopus japonicus through degradation of its algin content with Bacillus amyloliquefaciens WB1., Wang X, Wang L, Che J, Li Z, Zhang J, Li X, Hu W, Xu Y., Appl Microbiol Biotechnol. July 1, 2015; 99 (14): 5843-53.


Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus., Wang JH, Zhao LQ, Liu JF, Wang H, Xiao S., Fish Shellfish Immunol. April 1, 2015; 43 (2): 330-6.


Effect of intestinal autochthonous probiotics isolated from the gut of sea cucumber (Apostichopus japonicus) on immune response and growth of A. japonicus., Chi C, Liu JY, Fei SZ, Zhang C, Chang YQ, Liu XL, Wang GX., Fish Shellfish Immunol. June 1, 2014; 38 (2): 367-73.


Effects of dietary live yeast Hanseniaspora opuntiae C21 on the immune and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus., Ma Y, Liu Z, Yang Z, Li M, Liu J, Song J., Fish Shellfish Immunol. January 1, 2013; 34 (1): 66-73.


Oral region homologies in paleozoic crinoids and other plesiomorphic pentaradial echinoderms., Kammer TW, Sumrall CD, Zamora S, Ausich WI, Deline B., PLoS One. January 1, 2013; 8 (11): e77989.            


The calcium-mobilizing messenger nicotinic acid adenine dinucleotide phosphate participates in sperm activation by mediating the acrosome reaction., Vasudevan SR, Lewis AM, Chan JW, Machin CL, Sinha D, Galione A, Churchill GC., J Biol Chem. June 11, 2010; 285 (24): 18262-9.            


Echinoderm phosphorylated matrix proteins UTMP16 and UTMP19 have different functions in sea urchin tooth mineralization., Alvares K, Dixit SN, Lux E, Veis A., J Biol Chem. September 18, 2009; 284 (38): 26149-60.                    


Activation of M-phase-specific histone H1 kinase by modification of the phosphorylation of its p34cdc2 and cyclin components., Pondaven P, Meijer L, Beach D., Genes Dev. January 1, 1990; 4 (1): 9-17.


Liver damage by the crown-of-thorns starfish (Acanthaster planci) lethal factor., Shiomi K, Yamamoto S, Yamanaka H, Kikuchi T, Konno K., Toxicon. January 1, 1990; 28 (5): 469-75.


Starfish sperm-oocyte jelly binding triggers functional changes in cortical granules. A study using acid phosphatase and ruthenium red ultrastructural histochemistry., Sousa M, Azevedo C., Histochemistry. January 1, 1989; 90 (5): 353-7.


Presence of ATPase and alkaline phosphatase activities in the starfish sperm acrosome., Sousa M, Azevedo C., Cell Biol Int Rep. December 1, 1988; 12 (12): 1049-54.


Starfish acrosomal acid phosphatase: a cytochemical and biochemical study., Sousa M, Moradas Ferreira P, Amorim A, Azevedo C., Biol Cell. January 1, 1988; 63 (1): 101-4.


Isolation of sea urchin embryo cell surface membranes on polycationic beads., Helmly RB, Brown KM., Rouxs Arch Dev Biol. April 1, 1987; 196 (4): 262-267.


Characterization of yolk platelets isolated from developing embryos of Arbacia punctulata., Armant DR, Carson DD, Decker GL, Welply JK, Lennarz WJ., Dev Biol. February 1, 1986; 113 (2): 342-55.


Holothurian survival strategies: mechanisms for the maintenance of a bacteriostatic environment in the coelomic cavity of the sea cucumber, Parastichopus californicus., Dybas L, Fankboner PV., Dev Comp Immunol. January 1, 1986; 10 (3): 311-30.


Metabolic interconversion of dolichol and dolichyl phosphate during development of the sea urchin embryo., Rossignol DP, Scher M, Waechter CJ, Lennarz WJ., J Biol Chem. August 10, 1983; 258 (15): 9122-7.


Gelatin embedding for enzyme ultracytochemistry; acid phosphatase activity in sea urchin eggs., Tominaga A, Takashima Y., J Electron Microsc (Tokyo). January 1, 1981; 30 (4): 339-40.


Presence of acid phosphatase activity in heavy bodies of sea urchin eggs., Katsura S, Inazumi S., Dev Biol. October 1, 1978; 66 (2): 480-7.


Lytic enzymes in the autolysis of filamentous fungi., Lahoz R, Reyes F, Perez Leblic MI., Mycopathologia. December 10, 1976; 60 (1): 45-9.


Acid phosphatase analysis of Strongylocentrotus purpuratus eggs and blastulae., Lalague E, Cousineau GH., Lab Pract. December 1, 1975; 24 (12): 808-9.


Phosphatase active antigens in sea urchin eggs and embryos. I. Substrate specificity, pH-optima and inhibitors., Westin M., J Exp Zool. June 1, 1975; 192 (3): 307-14.


Phosphatase active antigens in sea urchin eggs and embryos. II. A comparison between the activities in unfertilized eggs and plutei., Westin M., J Exp Zool. June 1, 1975; 192 (3): 315-22.


Acid phosphatase analysis in sea urchin eggs and blastulae., Doré D, Cousineau GH., Exp Cell Res. October 1, 1967; 48 (1): 179-82.


The cytochemical reaction for acid phosphatase as applied to sea-urchin eggs studies in whole mounts., Dalcq AM., Arch Biol (Liege). January 1, 1965; 76 (2): 439-56.


Cytochemical localisations and ultrastructure in the fertilized unsegmented egg of Paracentrotus lividus., PASTEELS JJ, CASTIAUX P, VANDER-MEERSSCHE G., J Biophys Biochem Cytol. September 25, 1958; 4 (5): 575-7.

???pagination.result.page??? 1