Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (22) GO Terms (0) Nucleotides (4) Proteins (2) Interactants (48) Wiki
ECB-GENEPAGE-23066448

Papers associated with LOC115923479



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Comparisons of protective effects between two sea cucumber hydrolysates against diet induced hyperuricemia and renal inflammation in mice., Wan H, Han J, Tang S, Bao W, Lu C, Zhou J, Ming T, Li Y, Su X., Food Funct. January 29, 2020; 11 (1): 1074-1086.


MicroRNAs involved in innate immunity regulation in the sea cucumber: A review., Zhan Y, Liu L, Zhao T, Sun J, Cui D, Li Y, Chang Y., Fish Shellfish Immunol. December 1, 2019; 95 297-304.


Evolutionary conserved pathway of the innate immune response after a viral insult in Paracentrotus lividus sea urchin., Chiaramonte M, Arizza V, Russo R., Int J Immunogenet. June 1, 2019; 46 (3): 192-202.


Mitochondrial DNA: A new driver for sex differences in spontaneous hypertension., Echem C, Costa TJD, Oliveira V, Giglio Colli L, Landgraf MA, Rodrigues SF, Franco MDCP, Landgraf RG, Santos-Eichler RA, Bomfim GF, Akamine EH, de Carvalho MHC., Pharmacol Res. June 1, 2019; 144 142-150.


Anti-inflammation effects of fucosylated chondroitin sulphate from Acaudina molpadioides by altering gut microbiota in obese mice., Hu S, Wang J, Xu Y, Yang H, Wang J, Xue C, Yan X, Su L., Food Funct. March 20, 2019; 10 (3): 1736-1746.


Regulation of growth, intestinal microbiota, non-specific immune response and disease resistance of sea cucumber Apostichopus japonicus (Selenka) in biofloc systems., Chen J, Ren Y, Li Y, Xia B., Fish Shellfish Immunol. June 1, 2018; 77 175-186.


A polysaccharide component from Strongylocentrotus nudus eggs inhibited hepatocellular carcinoma in mice by activating T lymphocytes., Zhang M, Liu Y, Li J, Ke M, Yu J, Dou J, Wang H, Zhou C., Oncol Lett. March 1, 2017; 13 (3): 1847-1855.


Transcriptome analysis of the sea cucumber (Apostichopus japonicus) with variation in individual growth., Gao L, He C, Bao X, Tian M, Ma Z., PLoS One. January 1, 2017; 12 (7): e0181471.            


miR210 modulates respiratory burst in Apostichopus japonicus coelomocytes via targeting Toll-like receptor., Li C, Zhao M, Zhang C, Zhang W, Zhao X, Duan X, Xu W., Dev Comp Immunol. December 1, 2016; 65 377-381.


Long Non-Coding RNAs (lncRNAs) of Sea Cucumber: Large-Scale Prediction, Expression Profiling, Non-Coding Network Construction, and lncRNA-microRNA-Gene Interaction Analysis of lncRNAs in Apostichopus japonicus and Holothuria glaberrima During LPS Challenge and Radial Organ Complex Regeneration., Mu C, Wang R, Li T, Li Y, Tian M, Jiao W, Huang X, Zhang L, Hu X, Wang S, Bao Z., Mar Biotechnol (NY). August 1, 2016; 18 (4): 485-99.


Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway., Pinsino A, Russo R, Bonaventura R, Brunelli A, Marcomini A, Matranga V., Sci Rep. September 28, 2015; 5 14492.            


MiR-200 modulates coelomocytes antibacterial activities and LPS priming via targeting Tollip in Apostichopus japonicus., Lv Z, Li C, Zhang P, Wang Z, Zhang W, Jin CH., Fish Shellfish Immunol. August 1, 2015; 45 (2): 431-6.


NOD-like receptors: versatile cytosolic sentinels., Motta V, Soares F, Sun T, Philpott DJ., Physiol Rev. January 1, 2015; 95 (1): 149-78.


Expression analysis of immune related genes identified from the coelomocytes of sea cucumber (Apostichopus japonicus) in response to LPS challenge., Dong Y, Sun H, Zhou Z, Yang A, Chen Z, Guan X, Gao S, Wang B, Jiang B, Jiang J., Int J Mol Sci. October 27, 2014; 15 (11): 19472-86.    


Two adaptor molecules of MyD88 and TRAF6 in Apostichopus japonicus Toll signaling cascade: molecular cloning and expression analysis., Lu Y, Li C, Zhang P, Shao Y, Su X, Li Y, Li T., Dev Comp Immunol. December 1, 2013; 41 (4): 498-504.


Characterization of two negative regulators of the Toll-like receptor pathway in Apostichopus japonicus: inhibitor of NF-κB and Toll-interacting protein., Lu Y, Li C, Wang D, Su X, Jin C, Li Y, Li T., Fish Shellfish Immunol. November 1, 2013; 35 (5): 1663-9.


Differences in the repertoire, regulation and function of Toll-like Receptors and inflammasome-forming Nod-like Receptors between human and mouse., Ariffin JK, Sweet MJ., Curr Opin Microbiol. June 1, 2013; 16 (3): 303-10.


Identification and expression analysis of two Toll-like receptor genes from sea cucumber (Apostichopus japonicus)., Sun H, Zhou Z, Dong Y, Yang A, Jiang B, Gao S, Chen Z, Guan X, Wang B, Wang X., Fish Shellfish Immunol. January 1, 2013; 34 (1): 147-58.


Dynamic evolution of toll-like receptor multigene families in echinoderms., Buckley KM, Rast JP., Front Immunol. January 1, 2012; 3 136.            


A Crassostrea gigas Toll-like receptor and comparative analysis of TLR pathway in invertebrates., Zhang L, Li L, Zhang G., Fish Shellfish Immunol. February 1, 2011; 30 (2): 653-60.


The immune gene repertoire encoded in the purple sea urchin genome., Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP., Dev Biol. December 1, 2006; 300 (1): 349-65.


The evolution of vertebrate Toll-like receptors., Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A., Proc Natl Acad Sci U S A. July 5, 2005; 102 (27): 9577-82.

???pagination.result.page??? 1