Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (39) GO Terms (0) Nucleotides (7) Proteins (2) Interactants (60) Wiki
ECB-GENEPAGE-23130303

Papers associated with LOC586122



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Identification and sequencing of the gene encoding DNA methyltransferase 3 (DNMT3) from sea cucumber, Apostichopus japonicus., Hong HH, Lee SG, Jo J, Oh J, Cheon S, Lee HG, Park C., Mol Biol Rep. August 1, 2019; 46 (4): 3791-3800.


A Survey on Tubulin and Arginine Methyltransferase Families Sheds Light on P. lividus Embryo as Model System for Antiproliferative Drug Development., Ragusa MA, Nicosia A, Costa S, Casano C, Gianguzza F., Int J Mol Sci. April 30, 2019; 20 (9):                     


WDR5 regulates left-right patterning via chromatin-dependent and -independent functions., Kulkarni SS, Khokha MK., Development. November 28, 2018; 145 (23):


Depletion of ZBTB38 potentiates the effects of DNA demethylating agents in cancer cells via CDKN1C mRNA up-regulation., Marchal C, de Dieuleveult M, Saint-Ruf C, Guinot N, Ferry L, Olalla Saad ST, Lazarini M, Defossez PA, Miotto B., Oncogenesis. October 11, 2018; 7 (10): 82.            


Metabolic responses to intestine regeneration in sea cucumbers Apostichopus japonicus., Sun L, Sun J, Xu Q, Li X, Zhang L, Yang H., Comp Biochem Physiol Part D Genomics Proteomics. June 1, 2017; 22 32-38.


Understanding mechanism of sea cucumber Apostichopus japonicus aestivation: Insights from TMT-based proteomic study., Chen M, Li X, Zhu A, Storey KB, Sun L, Gao T, Wang T., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2016; 19 78-89.


Anguilla japonica lectin 1 delivery through adenovirus vector induces apoptotic cancer cell death through interaction with PRMT5., Li G, Gao Y, Cui L, Wu L, Yang X, Chen J., J Gene Med. April 1, 2016; 18 (4-6): 65-74.


The Roles of Two miRNAs in Regulating the Immune Response of Sea Cucumber., Zhang P, Li C, Zhang R, Zhang W, Jin C, Wang L, Song L., Genetics. December 1, 2015; 201 (4): 1397-410.


Evolutionary Analyses and Natural Selection of Betaine-Homocysteine S-Methyltransferase (BHMT) and BHMT2 Genes., Ganu RS, Ishida Y, Koutmos M, Kolokotronis SO, Roca AL, Garrow TA, Schook LB., PLoS One. January 1, 2015; 10 (7): e0134084.          


Exogenous expression of marine lectins DlFBL and SpRBL induces cancer cell apoptosis possibly through PRMT5-E2F-1 pathway., Wu L, Yang X, Duan X, Cui L, Li G., Sci Rep. March 28, 2014; 4 4505.        


Molecular cloning and expression-profile analysis of sea cucumber DNA (cytosine-5)-methyltransferase 1 and methyl-CpG binding domain type 2/3 genes during aestivation., Zhao Y, Chen M, Su L, Wang T, Liu S, Yang H., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2013; 165 (1): 26-35.


Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867)., Du H, Bao Z, Hou R, Wang S, Su H, Yan J, Tian M, Li Y, Wei W, Lu W, Hu X, Wang S, Hu J., PLoS One. January 1, 2012; 7 (3): e33311.      


Molecular cloning, expression, and characterization of starfish DNA (cytosine-5)-methyltransferases., Fujihara Y, Miyasako H, Kato K, Hayashi T, Toraya T., Biosci Biotechnol Biochem. January 1, 2012; 76 (9): 1661-71.


Determination of D-aspartate N-methyltransferase activity in the starfish by direct analysis of N-methyl-D-aspartate with high-performance liquid chromatography., Shibata K, Sugaya N, Ono W, Abe K, Takahashi S, Kera Y., J Chromatogr B Analyt Technol Biomed Life Sci. November 1, 2011; 879 (29): 3229-34.


Purification of arsenic (+3 oxidation state) methyltransferase from rat liver cytosol., Drobna Z, Styblo M, Thomas DJ., Curr Protoc Toxicol. November 1, 2009; Chapter 4 Unit4.34.


Meisetz and the birth of the KRAB motif., Birtle Z, Ponting CP., Bioinformatics. December 1, 2006; 22 (23): 2841-5.


Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses., Liu CJ, Deavours BE, Richard SB, Ferrer JL, Blount JW, Huhman D, Dixon RA, Noel JP., Plant Cell. December 1, 2006; 18 (12): 3656-69.


The capacity for the de novo biosynthesis of creatine is present in the tunicate Ciona intestinalis and is likely widespread in other protochordate and invertebrate groups., Deligio JT, Ellington WR., Comp Biochem Physiol Part D Genomics Proteomics. June 1, 2006; 1 (2): 167-78.


Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen., Wu Q, VanEtten HD., Mol Plant Microbe Interact. July 1, 2004; 17 (7): 798-804.


Methylation profile of P. lividus sea urchin genes during development., Piscopo A, Pulcrano G, Aniello F, Branno M, Fucci L., Ital J Biochem. December 1, 2003; 52 (4): 136-40.


Structural organization of the sea urchin DNA (cytosine-5)-methyltransferase gene and characterization of five alternative spliced transcripts., Aniello F, Villano G, Corrado M, Locascio A, Russo MT, D'Aniello S, Francone M, Fucci L, Branno M., Gene. January 2, 2003; 302 (1-2): 1-9.


An open reading frame in intron seven of the sea urchin DNA-methyltransferase gene codes for a functional AP1 endonuclease., Cioffi AV, Ferrara D, Cubellis MV, Aniello F, Corrado M, Liguori F, Amoroso A, Fucci L, Branno M., Biochem J. August 1, 2002; 365 (Pt 3): 833-40.


DNA (cytosine-5) methyltransferase turnover and cellular localization in developing Paracentrotus lividus sea urchin embryo., Di Giaimo R, Locascio A, Aniello F, Branno M, del Gaudio R, Potenza N, Geraci G., Gene. July 11, 2001; 272 (1-2): 199-208.


Characterization of a new variant DNA (cytosine-5)-methyltransferase unable to methylate double stranded DNA isolated from the marine annelid worm Chaetopterus variopedatus., del Gaudio R, Di Giaimo R, Potenza N, Branno M, Aniello F, Geraci G., FEBS Lett. October 29, 1999; 460 (2): 380-4.


The biosynthesis of 8-O-methylated sialic acids in the starfish Asterias rubens--isolation and characterisation of S-adenosyl-L-methionine:sialate-8-O-methyltransferase., Kelm A, Shaw L, Schauer R, Reuter G., Eur J Biochem. February 1, 1998; 251 (3): 874-84.


Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal step for the synthesis of the phytoalexin pisatin in Pisum sativum., Wu Q, Preisig CL, VanEtten HD., Plant Mol Biol. November 1, 1997; 35 (5): 551-60.


Functional and biosynthetic aspects of sialic acid diversity., Schauer R, de Freese A, Gollub M, Iwersen M, Kelm S, Reuter G, Schlenzka W, Vandamme-Feldhaus V, Shaw L., Indian J Biochem Biophys. January 1, 1997; 34 (1-2): 131-41.


New 5'' regions of the murine and human genes for DNA (cytosine-5)-methyltransferase., Yoder JA, Yen RW, Vertino PM, Bestor TH, Baylin SB., J Biol Chem. December 6, 1996; 271 (49): 31092-7.


Isolation of cDNA clones encoding DNA methyltransferase of sea urchin P. lividus: expression during embryonic development., Aniello F, Locascio A, Fucci L, Geraci G, Branno M., Gene. October 31, 1996; 178 (1-2): 57-61.


DNA methyltransferase activity in the early stages of a sea urchin embryo. Evidence of differential control., Tosi L, Aniello F, Geraci G, Branno M., FEBS Lett. March 13, 1995; 361 (1): 115-7.


Direct induction of DNA hypermethylation in sea urchin embryos by microinjection of 5-methyl dCTP stimulates early histone gene expression and leads to developmental arrest., Chen J, Maxson R, Jones PA., Dev Biol. January 1, 1993; 155 (1): 75-86.


Nature and biosynthesis of sialic acids in the starfish Asterias rubens. Identification of sialo-oligomers and detection of S-adenosyl-L-methionine: N-acylneuraminate 8-O-methyltransferase and CMP-N-acetylneuraminate monooxygenase activities., Bergwerff AA, Hulleman SH, Kamerling JP, Vliegenthart JF, Shaw L, Reuter G, Schauer R., Biochimie. January 1, 1992; 74 (1): 25-37.


Fragmentation of isoaspartyl peptides and proteins by carboxypeptidase Y: release of isoaspartyl dipeptides as a result of internal and external cleavage., Johnson BA, Aswad DW., Biochemistry. May 8, 1990; 29 (18): 4373-80.


Histone-lysine methyltransferase activity from sea-urchin embryo nuclei. Changes in substrate specificity upon purification., Aniello F, Branno M, Geraci G, Tosi L., Biochim Biophys Acta. June 1, 1989; 1008 (1): 31-8.


Sea urchin DNA methyltransferases., Tosi L, Tomei L, Branno M, Fuggi A, Aniello F, Geraci G., Cell Biophys. January 1, 1989; 15 (1-2): 127-43.


Can DNA methylation regulate gene expression?, Vardimon L, Renz D, Doerfler W., Recent Results Cancer Res. January 1, 1983; 84 90-102.


Expression of a cloned adenovirus gene is inhibited by in vitro methylation., Vardimon L, Kressmann A, Cedar H, Maechler M, Doerfler W., Proc Natl Acad Sci U S A. February 1, 1982; 79 (4): 1073-7.


erythro-9-[3-(2-Hydroxynonyl)]adenine is an inhibitor of sperm motility that blocks dynein ATPase and protein carboxylmethylase activities., Bouchard P, Penningroth SM, Cheung A, Gagnon C, Bardin CW., Proc Natl Acad Sci U S A. February 1, 1981; 78 (2): 1033-6.


Determination of S-adenosylmethionine and S-adenosylhomocysteine in nuclei isolated from sea urchin embryos during early development., Branno M., Boll Soc Ital Biol Sper. September 15, 1980; 56 (17): 1769-71.

???pagination.result.page??? 1