Results 1 - 24 of 24 results
Effects of Tin on Enzyme Activity in Holothuria grisea (Echinodermata: Holothuroidea). , Pereira TM, Mattar LP, Pereira ER, Merçon J, da Silva AG, Cruz ZM., Bull Environ Contam Toxicol. May 1, 2017; 98 (5): 607-611.
Review: Morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles. , Gambardella C, Ferrando S, Gatti AM, Cataldi E, Ramoino P, Aluigi MG, Faimali M, Diaspro A, Falugi C., Environ Toxicol. November 1, 2016; 31 (11): 1552-1562.
Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus). , Mesarič T, Sepčić K, Drobne D, Makovec D, Faimali M, Morgana S, Falugi C, Gambardella C., Aquat Toxicol. June 1, 2015; 163 158-66.
Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles. , Gambardella C, Aluigi MG, Ferrando S, Gallus L, Ramoino P, Gatti AM, Rottigni M, Falugi C., Aquat Toxicol. April 15, 2013; 130-131 77-85.
The carboxylesterase/ cholinesterase gene family in invertebrate deuterostomes. , Johnson G, Moore SW., Comp Biochem Physiol Part D Genomics Proteomics. June 1, 2012; 7 (2): 83-93.
Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. , Falugi C, Aluigi MG, Chiantore MC, Privitera D, Ramoino P, Gatti MA, Fabrizi A, Pinsino A, Matranga V ., Mar Environ Res. May 1, 2012; 76 114-21.
Acetyl cholinesterase activity and muscle contraction in the sea urchin Lytechinus variegatus (Lamarck) following chronic phosphate exposure. , Boettger SA, McClintock JB., Environ Toxicol. March 1, 2012; 27 (4): 193-201.
Amyloid precursor protein 96-110 and beta-amyloid 1-42 elicit developmental anomalies in sea urchin embryos and larvae that are alleviated by neurotransmitter analogs for acetylcholine, serotonin and cannabinoids. , Buznikov GA, Nikitina LA, Seidler FJ, Slotkin TA, Bezuglov VV, Milosević I, Lazarević L, Rogac L, Ruzdijić S, Rakić LM., Neurotoxicol Teratol. January 1, 2008; 30 (6): 503-9.
Sea-urchin (Paracentrotus lividus) glutathione S-transferases and cholinesterase activities as biomarkers of environmental contamination. , Cunha I, García LM, Guilhermino L., J Environ Monit. April 1, 2005; 7 (4): 288-94.
An invertebrate model of the developmental neurotoxicity of insecticides: effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae. , Buznikov GA, Nikitina LA, Bezuglov VV, Lauder JM, Padilla S, Slotkin TA., Environ Health Perspect. July 1, 2001; 109 (7): 651-61.
A new subfamily of high molecular mass CDC2-related kinases with PITAI/VRE motifs. , Marqués F, Moreau JL, Peaucellier G, Lozano JC, Schatt P, Picard A, Callebaut I, Perret E, Genevière AM., Biochem Biophys Res Commun. December 29, 2000; 279 (3): 832-7.
[Localization, kinetic parameters, and functions of cholinesterase of the starfish ampulla]. , Semenova MN., Ross Fiziol Zh Im I M Sechenova. October 1, 2000; 86 (10): 1268-77.
Pharmacological identification of acetylcholine receptor subtypes in echinoderm smooth muscle (Sclerodactyla briareus). , Devlin CL, Schlosser W, Belz DT, Kodiak K, Nash RF, Zitomer N., Comp Biochem Physiol C Toxicol Pharmacol. January 1, 2000; 125 (1): 53-64.
Cholinesterase activity in sea urchin early embryos may be correlated to the intracellular ion content. , De Vries M, Falugi C., Boll Soc Ital Biol Sper. April 1, 1994; 70 (4): 105-9.
[Cholinergic mechanisms in the central nervous system of the sipunculoid Physcosoma japonicum]. , Ger BA, Zeĭmal' EV, Kratskin IL, Lavrent'eva VV., Zh Evol Biokhim Fiziol. January 1, 1977; 13 (2): 179-84.
Isotonic and isometric responses of different tonic muscles to agonists and antagonists. , Michelson MJ, Shelkovnikov SA., Br J Pharmacol. April 1, 1976; 56 (4): 457-67.
[Heat stability of cholinesterase and non-specific esterases during development of hybrids of the sea urchins Stongylocentrotus droebachiensis and S. intermedius]. , Ivanenkov VV, Korobtsov GN., Ontogenez. January 1, 1976; 7 (4): 341-9.
[Localization of cholinesterase-Activity during gastrulation of the sea urchin embryo]. , Kocher-Becker U, Drews U, Drews U., Wilehm Roux Arch Dev Biol. June 1, 1975; 178 (2): 157-165.
Cholinesterase in embryonic development. , Drews U., Prog Histochem Cytochem. January 1, 1975; 7 (3): 1-52.
Coupled levels of thermal stability of aldolase and cholinesterase of muscle homogenates of closely related species of aquatic animals. , Kusakina AA., Sov J Ecol. May 1, 1974; 4 (4): 345-9.
Changes in esterase and cholinesterase isozymes in normally developing, animalized and radialized embryos of Arbacia punctulata. , O'Melia AF., Exp Cell Res. August 1, 1972; 73 (2): 469-74.
Acetylcholine and cholinesterase in the radial nerve of Asterias rubens. , Pentreath VW, Cottrell GA., Comp Biochem Physiol. December 1, 1968; 27 (3): 775-85.
[The effect of cholinesterase on fertilized eggs of Echinodermata]. , Buznikov GA, Markova LN., Dokl Akad Nauk SSSR. July 11, 1968; 181 (2): 497-500.
Cholinesterase in developing sea-urchin eggs. , AUGUSTINSSON KB, GUSTAFSON T., J Cell Comp Physiol. October 1, 1949; 34 (2): 311-21.