Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (25) GO Terms (6) Nucleotides (16) Proteins (10) Interactants (106) Wiki
ECB-GENEPAGE-23036724

Papers associated with wnt8a



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo., Martínez-Bartolomé M, Range RC., Development. December 16, 2019; 146 (24):                 


Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos., Range RC., Dev Biol. December 15, 2018; 444 (2): 83-92.


A novel gene''s role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos., Khadka A, Martínez-Bartolomé M, Burr SD, Range RC., Evodevo. January 22, 2018; 9 1.            


Ubiquitin C-terminal hydrolase37 regulates Tcf7 DNA binding for the activation of Wnt signalling., Han W, Lee H, Han JK., Sci Rep. February 15, 2017; 7 42590.            


Acquisition of the dorsal structures in chordate amphioxus., Morov AR, Ukizintambara T, Sabirov RM, Yasui K., Open Biol. June 1, 2016; 6 (6):                 


Wnt, Frizzled, and sFRP gene expression patterns during gastrulation in the starfish Patiria (Asterina) pectinifera., Kawai N, Kuraishi R, Kaneko H., Gene Expr Patterns. May 1, 2016; 21 (1): 19-27.


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I, Tsurugaya T, Santella L, Chun JT, Amore G, Kusunoki S, Asada A, Togo T, Akasaka K., Zygote. June 1, 2015; 23 (3): 426-46.                


Dynamic spatial pattern formation in the sea urchin embryo., Riaz SS, Mackey MC., J Math Biol. February 1, 2014; 68 (3): 581-608.


Expression of wnt and frizzled genes during early sea star development., McCauley BS, Akyar E, Filliger L, Hinman VF., Gene Expr Patterns. December 1, 2013; 13 (8): 437-44.


An essential role for maternal control of Nodal signaling., Kumari P, Gilligan PC, Lim S, Tran LD, Winkler S, Philp R, Sampath K., Elife. September 10, 2013; 2 e00683.                              


Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos., Range RC, Angerer RC, Angerer LM., PLoS Biol. January 1, 2013; 11 (1): e1001467.              


Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions., Hammond LM, Hofmann GE., J Exp Biol. July 15, 2012; 215 (Pt 14): 2445-54.


"Micromere" formation and expression of endomesoderm regulatory genes during embryogenesis of the primitive echinoid Prionocidaris baculosa., Yamazaki A, Kidachi Y, Minokawa T., Dev Growth Differ. June 1, 2012; 54 (5): 566-78.


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      


Expression patterns of wnt8 orthologs in two sand dollar species with different developmental modes., Nakata H, Minokawa T., Gene Expr Patterns. March 1, 2009; 9 (3): 152-7.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ, Angerer RC, Angerer LM., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo., Smith J, Davidson EH., Proc Natl Acad Sci U S A. December 23, 2008; 105 (51): 20089-94.


Embryonic pattern formation without morphogens., Bolouri H., Bioessays. May 1, 2008; 30 (5): 412-7.


A spatially dynamic cohort of regulatory genes in the endomesodermal gene network of the sea urchin embryo., Smith J, Kraemer E, Liu H, Theodoris C, Davidson E., Dev Biol. January 15, 2008; 313 (2): 863-75.


Runx expression is mitogenic and mutually linked to Wnt activity in blastula-stage sea urchin embryos., Robertson AJ, Coluccio A, Knowlton P, Dickey-Sims C, Coffman JA., PLoS One. January 1, 2008; 3 (11): e3770.            


A gene regulatory network subcircuit drives a dynamic pattern of gene expression., Smith J, Theodoris C, Davidson EH., Science. November 2, 2007; 318 (5851): 794-7.


cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network., Minokawa T, Wikramanayake AH, Davidson EH., Dev Biol. December 15, 2005; 288 (2): 545-58.


Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages., Wikramanayake AH, Peterson R, Chen J, Huang L, Bince JM, McClay DR, Klein WH., Genesis. July 1, 2004; 39 (3): 194-205.


Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma., Kauffman JS, Raff RA., Dev Genes Evol. December 1, 2003; 213 (12): 612-24.


Animal-vegetal axis patterning mechanisms in the early sea urchin embryo., Angerer LM, Angerer RC., Dev Biol. February 1, 2000; 218 (1): 1-12.

???pagination.result.page??? 1