Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (220) GO Terms (0) Nucleotides (22) Proteins (4) Interactants (271) Wiki
ECB-GENEPAGE-23031367

Papers associated with pole



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, Histology and 3D-reconstructions., Kaul-Strehlow S, Stach T., Front Zool. September 6, 2013; 10 (1): 53.                            


Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system., Bishop CD, MacNeil KE, Patel D, Taylor VJ, Burke RD., Dev Biol. May 1, 2013; 377 (1): 236-44.


Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos., Range RC, Angerer RC, Angerer LM., PLoS Biol. January 1, 2013; 11 (1): e1001467.              


Unc-5/netrin-mediated axonal projection during larval serotonergic nervous system formation in the sea urchin, Hemicentrotus pulcherrimus., Abe K, Katow T, Ooka S, Katow H., Int J Dev Biol. January 1, 2013; 57 (5): 415-25.


Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling., Peng CJ, Wikramanayake AH., PLoS One. January 1, 2013; 8 (11): e80693.          


The tension at the top of the animal pole decreases during meiotic cell division., Satoh SK, Tsuchi A, Satoh R, Miyoshi H, Hamaguchi MS, Hamaguchi Y., PLoS One. January 1, 2013; 8 (11): e79389.                


Bilateral proliferative retinopathy as the initial presentation of chronic myeloid leukemia., Macedo MS, Figueiredo AR, Ferreira NN, Barbosa IM, Furtado MJ, Correia NF, Gomes MP, Lume MR, Menéres MJ, Santos MM, Meireles MA., Middle East Afr J Ophthalmol. January 1, 2013; 20 (4): 353-6.      


Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin., Yajima M, Wessel GM., Development. October 1, 2012; 139 (20): 3786-94.


Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms., McCauley BS, Wright EP, Exner C, Kitazawa C, Hinman VF., Evodevo. August 9, 2012; 3 (1): 17.          


"Micromere" formation and expression of endomesoderm regulatory genes during embryogenesis of the primitive echinoid Prionocidaris baculosa., Yamazaki A, Kidachi Y, Minokawa T., Dev Growth Differ. June 1, 2012; 54 (5): 566-78.


The effect of taxol microinjection on the microtubular structure in polar body formation of starfish oocytes., Kikuchi Y, Hamaguchi Y., Cytoskeleton (Hoboken). February 1, 2012; 69 (2): 125-32.


Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult., Warner JF, Lyons DC, McClay DR., PLoS Biol. January 1, 2012; 10 (10): e1001404.  


Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N, Haillot E, Duboc V, Röttinger E, Lahaye F, Lepage T., PLoS Genet. January 1, 2012; 8 (12): e1003121.                      


Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states., Lyons DC, Kaltenbach SL, McClay DR., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (2): 231-52.


Atypical protein kinase C controls sea urchin ciliogenesis., Prulière G, Cosson J, Chevalier S, Sardet C, Chenevert J., Mol Biol Cell. June 15, 2011; 22 (12): 2042-53.                


Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni., Takata H, Kominami T., Dev Growth Differ. June 1, 2011; 53 (5): 625-38.


The echinoid mitotic gradient: effect of cell size on the micromere cleavage cycle., Duncan RE, Whiteley AH., Mol Reprod Dev. January 1, 2011; 78 (10-11): 868-78.


Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      


ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo., Yaguchi S, Yaguchi J, Wei Z, Shiba K, Angerer LM, Inaba K., Dev Biol. December 1, 2010; 348 (1): 67-75.


Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms., Yankura KA, Martik ML, Jennings CK, Hinman VF., BMC Biol. November 30, 2010; 8 143.          


A mathematical model of cleavage., Akiyama M, Tero A, Kobayashi R., J Theor Biol. May 7, 2010; 264 (1): 84-94.


A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos., McCauley BS, Weideman EP, Hinman VF., Dev Biol. April 15, 2010; 340 (2): 200-8.


Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida)., Vellutini BC, Migotto AE., PLoS One. March 22, 2010; 5 (3): e9654.                                


Action at a distance during cytokinesis., von Dassow G, Verbrugghe KJ, Miller AL, Sider JR, Bement WM., J Cell Biol. December 14, 2009; 187 (6): 831-45.                


Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network., Lapraz F, Besnardeau L, Lepage T., PLoS Biol. November 1, 2009; 7 (11): e1000248.                        


Guanine nucleotides in the meiotic maturation of starfish oocytes: regulation of the actin cytoskeleton and of Ca(2+) signaling., Kyozuka K, Chun JT, Puppo A, Gragnaniello G, Garante E, Santella L., PLoS One. July 20, 2009; 4 (7): e6296.            


The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center., Wei Z, Yaguchi J, Yaguchi S, Angerer RC, Angerer LM., Development. April 1, 2009; 136 (7): 1179-89.


Calyculin-A induces cleavage in a random plane in unfertilized sea urchin eggs., Goda M, Inoué S, Mabuchi I., Biol Bull. February 1, 2009; 216 (1): 40-4.


Specification process of animal plate in the sea urchin embryo., Sasaki H, Kominami T., Dev Growth Differ. September 1, 2008; 50 (7): 595-606.


Bipolar, anastral spindle development in artificially activated sea urchin eggs., Henson JH, Fried CA, McClellan MK, Ader J, Davis JE, Oldenbourg R, Simerly CR., Dev Dyn. May 1, 2008; 237 (5): 1348-58.


Embryonic pattern formation without morphogens., Bolouri H., Bioessays. May 1, 2008; 30 (5): 412-7.


Bisphenol A directly targets tubulin to disrupt spindle organization in embryonic and somatic cells., George O, Bryant BK, Chinnasamy R, Corona C, Arterburn JB, Shuster CB., ACS Chem Biol. March 20, 2008; 3 (3): 167-79.


Development of the nervous system in the brittle star Amphipholis kochii., Hirokawa T, Komatsu M, Nakajima Y., Dev Genes Evol. January 1, 2008; 218 (1): 15-21.


Wnt signaling in the early sea urchin embryo., Kumburegama S, Wikramanayake AH., Methods Mol Biol. January 1, 2008; 469 187-99.


Compositional genome contexts affect gene expression control in sea urchin embryo., Mahmud AA, Amore G, Bernardi G., PLoS One. January 1, 2008; 3 (12): e4025.      


Xenopus laevis Keller Explants., Sive HL, Grainger RM, Harland RM., CSH Protoc. June 1, 2007; 2007 pdb.prot4749.


Animal Cap Isolation from Xenopus laevis., Sive HL, Grainger RM, Harland RM., CSH Protoc. June 1, 2007; 2007 pdb.prot4744.


The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY, McClay DR., Development. March 1, 2007; 134 (6): 1061-70.


Strongylocentrotus drobachiensis oocytes maintain a microtubule organizing center throughout oogenesis: implications for the establishment of egg polarity in sea urchins., Egaña AL, Boyle JA, Ernst SG., Mol Reprod Dev. January 1, 2007; 74 (1): 76-87.


A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G., Genome Biol. January 1, 2007; 8 (5): R85.                


Quantitative analysis of cortical actin filaments during polar body formation in starfish oocytes., Hamaguchi Y, Numata T, K Satoh S., Cell Struct Funct. January 1, 2007; 32 (1): 29-40.


The emergence of pattern in embryogenesis: regulation of beta-catenin localization during early sea urchin development., Ettensohn CA., Sci STKE. November 14, 2006; 2006 (361): pe48.


Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos., Yaguchi S, Yaguchi J, Burke RD., Development. June 1, 2006; 133 (12): 2337-46.


Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network., Livi CB, Davidson EH., Dev Biol. May 15, 2006; 293 (2): 513-25.


Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo., Kominami T, Akagawa M, Takata H., Dev Growth Differ. February 1, 2006; 48 (2): 101-15.


Nodal signaling and the evolution of deuterostome gastrulation., Chea HK, Wright CV, Swalla BJ., Dev Dyn. October 1, 2005; 234 (2): 269-78.


Induction and the Turing-Child field in development., Schiffmann Y., Prog Biophys Mol Biol. September 1, 2005; 89 (1): 36-92.


Characterization and expression of two matrix metalloproteinase genes during sea urchin development., Ingersoll EP, Pendharkar NC., Gene Expr Patterns. August 1, 2005; 5 (6): 727-32.


A microtubule-dependent zone of active RhoA during cleavage plane specification., Bement WM, Benink HA, von Dassow G., J Cell Biol. July 4, 2005; 170 (1): 91-101.              


Selection of initial conditions for recursive production of multicellular organisms., Yoshida H, Furusawa C, Kaneko K., J Theor Biol. April 21, 2005; 233 (4): 501-14.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 ???pagination.result.next???