Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (93) GO Terms (0) Nucleotides (67) Proteins (58) Interactants (148) Wiki

Papers associated with LOC575170

Limit to papers also referencing gene:

Results 1 - 50 of 93 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus., Tsironis I, Paganos P, Gouvi G, Tsimpos P, Stamopoulou A, Arnone MI, Flytzanis CN., Dev Biol. July 1, 2021; 475 131-144.

The gene regulatory control of sea urchin gastrulation., Ettensohn CA., Mech Dev. June 1, 2020; 162 103599.

A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo., Martínez-Bartolomé M, Range RC., Development. December 16, 2019; 146 (24):                 

How Does the Regulatory Genome Work?, Istrail S, Peter IS., J Comput Biol. July 1, 2019; 26 (7): 685-695.

Developmental effector gene regulation: Multiplexed strategies for functional analysis., Wang L, Koppitch K, Cutting A, Dong P, Kudtarkar P, Zeng J, Cameron RA, Davidson EH., Dev Biol. January 1, 2019; 445 (1): 68-79.

Using ATAC-seq and RNA-seq to increase resolution in GRN connectivity., Lowe EK, Cuomo C, Voronov D, Arnone MI., Methods Cell Biol. January 1, 2019; 151 115-126.

Methods for the experimental and computational analysis of gene regulatory networks in sea urchins., Peter IS., Methods Cell Biol. January 1, 2019; 151 89-113.

The Axial Organ and the Pharynx Are Sites of Hematopoiesis in the Sea Urchin., Golconda P, Buckley KM, Reynolds CR, Romanello JP, Smith LC., Front Immunol. January 1, 2019; 10 870.              

Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids., Erkenbrack EM, Davidson EH, Peter IS., Development. December 18, 2018; 145 (24):

Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos., Range RC., Dev Biol. December 15, 2018; 444 (2): 83-92.

From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms., Shashikant T, Khor JM, Ettensohn CA., Genesis. October 1, 2018; 56 (10): e23253.

Bacterial artificial chromosomes as recombinant reporter constructs to investigate gene expression and regulation in echinoderms., Buckley KM, Dong P, Cameron RA, Rast JP., Brief Funct Genomics. September 27, 2018; 17 (5): 362-371.

Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling., Shashikant T, Khor JM, Ettensohn CA., BMC Genomics. March 20, 2018; 19 (1): 206.            

A novel gene''s role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos., Khadka A, Martínez-Bartolomé M, Burr SD, Range RC., Evodevo. January 22, 2018; 9 1.            

Omics approaches to study gene regulatory networks for development in echinoderms., Lowe EK, Cuomo C, Arnone MI., Brief Funct Genomics. September 1, 2017; 16 (5): 299-308.

Echinoderm development and evolution in the post-genomic era., Cary GA, Hinman VF., Dev Biol. July 15, 2017; 427 (2): 203-211.

Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins., Thompson JR, Erkenbrack EM, Hinman VF, McCauley BS, Petsios E, Bottjer DJ., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5870-5877.

Genome-wide use of high- and low-affinity Tbrain transcription factor binding sites during echinoderm development., Cary GA, Cheatle Jarvela AM, Francolini RD, Hinman VF., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5854-5861.

Assessing regulatory information in developmental gene regulatory networks., Peter IS, Davidson EH., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5862-5869.

An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response., Buckley KM, Rast JP., Front Immunol. March 13, 2017; 8 1297.    

Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins., Erkenbrack EM., Proc Natl Acad Sci U S A. November 15, 2016; 113 (46): E7202-E7211.

Echinoderm systems for gene regulatory studies in evolution and development., Arnone MI, Andrikou C, Annunziata R., Curr Opin Genet Dev. August 1, 2016; 39 129-137.

Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris., Israel JW, Martik ML, Byrne M, Raff EC, Raff RA, McClay DR, Wray GA., PLoS Biol. March 1, 2016; 14 (3): e1002391.            

Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks., Dylus DV, Czarkwiani A, Stångberg J, Ortega-Martinez O, Dupont S, Oliveri P., Evodevo. January 1, 2016; 7 2.            

Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms., Erkenbrack EM, Ako-Asare K, Miller E, Tekelenburg S, Thompson JR, Romano L., Dev Genes Evol. January 1, 2016; 226 (1): 37-45.

Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks., Ben-Tabou de-Leon S., Front Genet. January 1, 2016; 7 16.    

A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms., Lapraz F, Haillot E, Lepage T., Nat Commun. October 1, 2015; 6 8434.                    

Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo., Martik ML, McClay DR., Elife. September 24, 2015; 4                               

Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses., Erkenbrack EM, Davidson EH., Proc Natl Acad Sci U S A. July 28, 2015; 112 (30): E4075-84.

Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C, Pai CY, Su YH, Arnone MI., Elife. July 28, 2015; 4                                       

Juvenile skeletogenesis in anciently diverged sea urchin clades., Gao F, Thompson JR, Petsios E, Erkenbrack E, Moats RA, Bottjer DJ, Davidson EH., Dev Biol. April 1, 2015; 400 (1): 148-58.

Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network., Sun Z, Ettensohn CA., Gene Expr Patterns. November 1, 2014; 16 (2): 93-103.

Modular evolution of DNA-binding preference of a Tbrain transcription factor provides a mechanism for modifying gene regulatory networks., Cheatle Jarvela AM, Brubaker L, Vedenko A, Gupta A, Armitage BA, Bulyk ML, Hinman VF., Mol Biol Evol. October 1, 2014; 31 (10): 2672-88.            

Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida)., Boyle MJ, Yamaguchi E, Seaver EC., Evodevo. June 17, 2014; 5 39.          

Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition., Saunders LR, McClay DR., Development. April 1, 2014; 141 (7): 1503-13.

Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo., Li E, Cui M, Peter IS, Davidson EH., Proc Natl Acad Sci U S A. March 11, 2014; 111 (10): E906-13.

Developmental gene regulatory network evolution: insights from comparative studies in echinoderms., Hinman VF, Cheatle Jarvela AM., Genesis. March 1, 2014; 52 (3): 193-207.

Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins., Rafiq K, Shashikant T, McManus CJ, Ettensohn CA., Development. February 1, 2014; 141 (4): 950-61.

Multicolor labeling in developmental gene regulatory network analysis., Sethi AJ, Angerer RC, Angerer LM., Methods Mol Biol. January 1, 2014; 1128 249-62.

Brief notes on the meaning of a genomic control system for animal embryogenesis., Davidson E., Perspect Biol Med. January 1, 2014; 57 (1): 78-86.

Cis-regulatory control of the nuclear receptor Coup-TF gene in the sea urchin Paracentrotus lividus embryo., Kalampoki LG, Flytzanis CN., PLoS One. January 1, 2014; 9 (11): e109274.                    

New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN., Li E, Materna SC, Davidson EH., Dev Biol. October 1, 2013; 382 (1): 268-79.

Encoding anatomy: developmental gene regulatory networks and morphogenesis., Ettensohn CA., Genesis. June 1, 2013; 51 (6): 383-409.

Networking development by Boolean logic., Tu S, Pederson T, Weng Z., Nucleus. January 1, 2013; 4 (2): 89-91.

Predictive computation of genomic logic processing functions in embryonic development., Peter IS, Faure E, Davidson EH., Proc Natl Acad Sci U S A. October 9, 2012; 109 (41): 16434-42.

Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions., Hammond LM, Hofmann GE., J Exp Biol. July 15, 2012; 215 (Pt 14): 2445-54.

Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis., Ransick A, Davidson EH., Dev Biol. April 15, 2012; 364 (2): 259-67.

The genomic regulatory control of skeletal morphogenesis in the sea urchin., Rafiq K, Cheers MS, Ettensohn CA., Development. February 1, 2012; 139 (3): 579-90.

Synthetic in vivo validation of gene network circuitry., Damle SS, Davidson EH., Proc Natl Acad Sci U S A. January 31, 2012; 109 (5): 1548-53.

Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus., Damle S, Davidson EH., Dev Biol. September 15, 2011; 357 (2): 505-17.

Page(s): 1 2 Next