Results 1 - 19 of 19 results
Sedoheptulose kinase bridges the pentose phosphate pathway and immune responses in pathogen-challenged sea cucumber Apostichopus japonicus. , Sun L, Zhou F, Shao Y , Lv Z , Li C., Dev Comp Immunol. August 1, 2020; 109 103694.
4-Hydroxyphenylpyruvate dioxygenase from sea cucumber Apostichopus japonicus negatively regulates reactive oxygen species production. , Liang W, Zhang W , Lv Z , Li C., Fish Shellfish Immunol. June 1, 2020; 101 261-268.
Effects of sublethal Cd, Zn, and mixture exposures on antioxidant defense and oxidative stress parameters in early life stages of the purple sea urchin Strongylocentrotus purpuratus. , Klein RD, Nogueira LS, Domingos-Moreira FXV, Gomes Costa P, Bianchini A, Wood CM., Aquat Toxicol. December 1, 2019; 217 105338.
Immunomodulatory Protein from Nectria haematococca Induces Apoptosis in Lung Cancer Cells via the P53 Pathway. , Wang JJ , Wang Y , Hou L, Xin F, Fan B, Lu C, Zhang L , Wang F, Li S., Int J Mol Sci. October 28, 2019; 20 (21):
Novel pentacyclic triterpene isolated from seeds of Euryale Ferox Salisb. ameliorates diabetes in streptozotocin induced diabetic rats. , Ahmed D, Khan MI, Sharma M, Khan MF., Interdiscip Toxicol. December 1, 2018; 11 (4): 275-288.
Synergistic effect of eicosapentaenoic acid-enriched phospholipids and sea cucumber saponin on orotic acid-induced non-alcoholic fatty liver disease in rats. , Guo Y, Han X, Che H, Li Z, Dong P, Xue C , Zhang T, Wang Y ., R Soc Open Sci. July 11, 2018; 5 (7): 172182.
Mechanisms of echinochrome potency in modulating diabetic complications in liver. , Mohamed AS, Soliman AM, Marie MAS., Life Sci. April 15, 2016; 151 41-49.
Palmitoleic acid (n-7) increases white adipocytes GLUT4 content and glucose uptake in association with AMPK activation. , Bolsoni-Lopes A, Festuccia WT, Chimin P, Farias TS, Torres-Leal FL, Cruz MM, Andrade PB, Hirabara SM, Lima FB, Alonso-Vale MI., Lipids Health Dis. December 20, 2014; 13 199.
Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARalpha and SREBP-1c signaling. , Hu XQ, Wang YM , Wang JF , Xue Y, Li ZJ, Nagao K, Yanagita T, Xue CH ., Lipids Health Dis. March 9, 2010; 9 25.
Molecular evidence of the existence of two sibling species within the echinothurioid echinoid Asthenosoma ijimai from Japanese waters. , Matsuoka N, Kohyama K, Arakawa E, Amemiya S ., Zoolog Sci. October 1, 2004; 21 (10): 1057-61.
The in vivo rate of glucose-6-phosphate dehydrogenase activity in sea urchin eggs determined with a photolabile caged substrate. , Swezey RR, Epel D ., Dev Biol. June 1, 1995; 169 (2): 733-44.
The initiation of development at fertilization. , Epel D ., Cell Differ Dev. January 1, 1990; 29 (1): 1-12.
Enzyme stimulation upon fertilization is revealed in electrically permeabilized sea urchin eggs. , Swezey RR, Epel D ., Proc Natl Acad Sci U S A. February 1, 1988; 85 (3): 812-6.
Regulation of glucose-6-phosphate dehydrogenase activity in sea urchin eggs by reversible association with cell structural elements. , Swezey RR, Epel D ., J Cell Biol. October 1, 1986; 103 (4): 1509-15.
Identification of nonmitochondrial creatine kinase enzymatic activity in isolated sea urchin mitotic apparatus. , Silver RB, Saft MS, Taylor AR, Cole RD., J Biol Chem. November 10, 1983; 258 (21): 13287-91.
Histochemical observations on the pyloric caeca of Asterias rubens (Echinodermata, asteroidea) in relation to the reproductive cycle. , Van Der Plas AJ, Voogt PA., J Morphol. November 1, 1983; 178 (2): 179-186.
Mechanisms of G6PD isozyme pattern changes at fertilization. , Barber ML, Kolan DM, Yabuta C, Nielsen B., J Exp Zool. February 20, 1982; 219 (3): 369-76.
Activity of glucose-6-phosphate dehydrogenase in sea urchin emtryos of different developmental trends. , BACKSTROM S., Exp Cell Res. October 1, 1959; 18 347-56.
Glucose-6-phosphate and 6-phosphogluconate dehydrogenases from eggs of the sea urchin, Arbacia punctulata. , KRAHL ME, KELTCH AK, WALTERS CP, CLOWES GH., J Gen Physiol. March 20, 1955; 38 (4): 431-9.