Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (31) GO Terms (5) Nucleotides (24) Proteins (18) Interactants (93) Wiki

Papers associated with alx1

Limit to papers also referencing gene:

Results 1 - 31 of 31 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus., Tsironis I, Paganos P, Gouvi G, Tsimpos P, Stamopoulou A, Arnone MI, Flytzanis CN., Dev Biol. July 1, 2021; 475 131-144.

CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin., Pieplow A, Dastaw M, Sakuma T, Sakamoto N, Yamamoto T, Yajima M, Oulhen N, Wessel GM., Dev Biol. April 1, 2021; 472 85-97.

The evolution of a new cell type was associated with competition for a signaling ligand., Ettensohn CA, Adomako-Ankomah A., PLoS Biol. September 18, 2019; 17 (9): e3000460.                    

Genome-wide identification of binding sites and gene targets of Alx1, a pivotal regulator of echinoderm skeletogenesis., Khor JM, Guerrero-Santoro J, Ettensohn CA., Development. August 19, 2019; 146 (16):

Hidden genetic history of the Japanese sand dollar Peronella (Echinoidea: Laganidae) revealed by nuclear intron sequences., Endo M, Hirose M, Honda M, Koga H, Morino Y, Kiyomoto M, Wada H., Gene. June 15, 2018; 659 37-43.

Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling., Shashikant T, Khor JM, Ettensohn CA., BMC Genomics. March 20, 2018; 19 (1): 206.            

Transforming a transcription factor., Burke RD., Elife. January 8, 2018; 7   

Thyroid Hormones Accelerate Initiation of Skeletogenesis via MAPK (ERK1/2) in Larval Sea Urchins (Strongylocentrotus purpuratus)., Taylor E, Heyland A., Front Endocrinol (Lausanne). January 1, 2018; 9 439.                          

Functional divergence of paralogous transcription factors supported the evolution of biomineralization in echinoderms., Khor JM, Ettensohn CA., Elife. November 20, 2017; 6                                 

Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks., Dylus DV, Czarkwiani A, Stångberg J, Ortega-Martinez O, Dupont S, Oliveri P., Evodevo. January 1, 2016; 7 2.            

Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton., Koga H, Fujitani H, Morino Y, Miyamoto N, Tsuchimoto J, Shibata TF, Nozawa M, Shigenobu S, Ogura A, Tachibana K, Kiyomoto M, Amemiya S, Wada H., PLoS One. January 1, 2016; 11 (2): e0149067.          

microRNA-31 modulates skeletal patterning in the sea urchin embryo., Stepicheva NA, Song JL., Development. November 1, 2015; 142 (21): 3769-80.

Juvenile skeletogenesis in anciently diverged sea urchin clades., Gao F, Thompson JR, Petsios E, Erkenbrack E, Moats RA, Bottjer DJ, Davidson EH., Dev Biol. April 1, 2015; 400 (1): 148-58.

Expession patterns of mesenchyme specification genes in two distantly related echinoids, Glyptocidaris crenularis and Echinocardium cordatum., Yamazaki A, Minokawa T., Gene Expr Patterns. March 1, 2015; 17 (2): 87-97.

Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate., Yamazaki A, Kidachi Y, Yamaguchi M, Minokawa T., Development. July 1, 2014; 141 (13): 2669-79.

Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition., Saunders LR, McClay DR., Development. April 1, 2014; 141 (7): 1503-13.

Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins., Rafiq K, Shashikant T, McManus CJ, Ettensohn CA., Development. February 1, 2014; 141 (4): 950-61.

Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis., Czarkwiani A, Dylus DV, Oliveri P., Gene Expr Patterns. December 1, 2013; 13 (8): 464-72.        

Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms., McCauley BS, Wright EP, Exner C, Kitazawa C, Hinman VF., Evodevo. August 9, 2012; 3 (1): 17.          

Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus., Damle S, Davidson EH., Dev Biol. September 15, 2011; 357 (2): 505-17.

Conserved early expression patterns of micromere specification genes in two echinoid species belonging to the orders clypeasteroida and echinoida., Yamazaki A, Furuzawa Y, Yamaguchi M., Dev Dyn. December 1, 2010; 239 (12): 3391-403.

Activation of the skeletogenic gene regulatory network in the early sea urchin embryo., Sharma T, Ettensohn CA., Development. April 1, 2010; 137 (7): 1149-57.

Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network., Kühn C, Wierling C, Kühn A, Klipp E, Panopoulou G, Lehrach H, Poustka AJ., BMC Syst Biol. August 23, 2009; 3 83.                      

Structure-function correlation of micro1 for micromere specification in sea urchin embryos., Yamazaki A, Ki S, Kokubo T, Yamaguchi M., Mech Dev. January 1, 2009; 126 (8-9): 611-23.

The surprising complexity of the transcriptional regulation of the spdri gene reveals the existence of new linkages inside sea urchin''s PMC and Oral Ectoderm Gene Regulatory Networks., Mahmud AA, Amore G., Dev Biol. October 15, 2008; 322 (2): 425-34.

Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo., Wu SY, Yang YP, McClay DR., Dev Biol. July 15, 2008; 319 (2): 406-15.

A new method, using cis-regulatory control, for blocking embryonic gene expression., Smith J, Davidson EH., Dev Biol. June 15, 2008; 318 (2): 360-5.

The Snail repressor is required for PMC ingression in the sea urchin embryo., Wu SY, McClay DR., Development. March 1, 2007; 134 (6): 1061-70.

P16 is an essential regulator of skeletogenesis in the sea urchin embryo., Cheers MS, Ettensohn CA., Dev Biol. July 15, 2005; 283 (2): 384-96.

A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets., Röttinger E, Besnardeau L, Lepage T., Development. March 1, 2004; 131 (5): 1075-87.

Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo., Ettensohn CA, Illies MR, Oliveri P, De Jong DL., Development. July 1, 2003; 130 (13): 2917-28.              

Page(s): 1