Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (19) GO Terms (8) Nucleotides (14) Proteins (11) Interactants (255) Wiki

Papers associated with fgfr3

Limit to papers also referencing gene:

Results 1 - 19 of 19 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Benzimidazolyl-pyrazolo[3,4-b]pyridinones, Selective Inhibitors of MOLT-4 Leukemia Cell Growth and Sea Urchin Embryo Spiculogenesis: Target Quest., Lichitsky BV, Komogortsev AN, Dudinov AA, Krayushkin MM, Khodot EN, Samet AV, Silyanova EA, Konyushkin LD, Karpov AS, Gorses D, Radimerski T, Semenova MN, Kiselyov AS, Semenov VV., ACS Comb Sci. December 9, 2019; 21 (12): 805-816.

Sea cucumber genome provides insights into saponin biosynthesis and aestivation regulation., Li Y, Wang R, Xun X, Wang J, Bao L, Thimmappa R, Ding J, Jiang J, Zhang L, Li T, Lv J, Mu C, Hu X, Zhang L, Liu J, Li Y, Yao L, Jiao W, Wang Y, Lian S, Zhao Z, Zhan Y, Huang X, Liao H, Wang J, Sun H, Mi X, Xia Y, Xing Q, Lu W, Osbourn A, Zhou Z, Chang Y, Bao Z, Wang S., Cell Discov. June 26, 2018; 4 29.          

Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes., Burguera D, Marquez Y, Racioppi C, Permanyer J, Torres-Méndez A, Esposito R, Albuixech-Crespo B, Fanlo L, D'Agostino Y, Gohr A, Navas-Perez E, Riesgo A, Cuomo C, Benvenuto G, Christiaen LA, Martí E, D'Aniello S, Spagnuolo A, Ristoratore F, Arnone MI, Garcia-Fernàndez J, Irimia M., Nat Commun. November 27, 2017; 8 (1): 1799.              

Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms., Garner S, Zysk I, Byrne G, Kramer M, Moller D, Taylor V, Burke RD., Development. January 15, 2016; 143 (2): 286-97.

FGF signaling repertoire of the indirect developing hemichordate Ptychodera flava., Fan TP, Su YH., Mar Genomics. December 1, 2015; 24 Pt 2 167-75.

Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm., Andrikou C, Pai CY, Su YH, Arnone MI., Elife. July 28, 2015; 4                                       

Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo., Bessodes N, Haillot E, Duboc V, Röttinger E, Lahaye F, Lepage T., PLoS Genet. January 1, 2012; 8 (12): e1003121.                      

Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm., Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T., PLoS Genet. December 23, 2010; 6 (12): e1001259.                      

Comparison of the receptor FGFRL1 from sea urchins and humans illustrates evolution of a zinc binding motif in the intracellular domain., Zhuang L, Karotki AV, Bruecker P, Trueb B., BMC Biochem. December 18, 2009; 10 33.          

FGFRL1 is a neglected putative actor of the FGF signalling pathway present in all major metazoan phyla., Bertrand S, Somorjai I, Garcia-Fernandez J, Lamonerie T, Escriva H., BMC Evol Biol. September 9, 2009; 9 226.            

Gene expansion and retention leads to a diverse tyrosine kinase superfamily in amphioxus., D'Aniello S, Irimia M, Maeso I, Pascual-Anaya J, Jiménez-Delgado S, Bertrand S, Garcia-Fernàndez J., Mol Biol Evol. September 1, 2008; 25 (9): 1841-54.

FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development., Röttinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, Lepage T., Development. January 1, 2008; 135 (2): 353-65.

A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G., Genome Biol. January 1, 2007; 8 (5): R85.                

Growth factors, apoptotic cells and barx1 gene in bone and soft tissue of skeletal class III patients., Jankovska I, Pilmane M, Urtane I, Bigestans A, Salms G, Lauskis G., Stomatologija. January 1, 2007; 9 (2): 40-6.

RTK and TGF-beta signaling pathways genes in the sea urchin genome., Lapraz F, Röttinger E, Duboc V, Range R, Duloquin L, Walton K, Wu SY, Bradham C, Loza MA, Hibino T, Wilson K, Poustka A, McClay D, Angerer L, Gache C, Lepage T., Dev Biol. December 1, 2006; 300 (1): 132-52.

Transforming potential of alternatively spliced variants of fibroblast growth factor receptor 2 in human mammary epithelial cells., Moffa AB, Tannheimer SL, Ethier SP., Mol Cancer Res. November 1, 2004; 2 (11): 643-52.

Of urchins and men: evolution of an alternative splicing unit in fibroblast growth factor receptor genes., Mistry N, Harrington W, Lasda E, Wagner EJ, Garcia-Blanco MA., RNA. February 1, 2003; 9 (2): 209-17.

Sea urchin FGFR muscle-specific expression: posttranscriptional regulation in embryos and adults., McCoon PE, Blackstone E, Angerer RC, Angerer LM., Dev Biol. August 15, 1998; 200 (2): 171-81.

SpFGFR, a new member of the fibroblast growth factor receptor family, is developmentally regulated during early sea urchin development., McCoon PE, Angerer RC, Angerer LM., J Biol Chem. August 16, 1996; 271 (33): 20119-25.

Page(s): 1