Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (99) GO Terms (0) Nucleotides (24) Proteins (12) Interactants (167) Wiki
ECB--23115451

Papers associated with LOC594353



Limit to papers also referencing gene:

Results 1 - 50 of 99 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Insights into intestinal regeneration signaling mechanisms., Bello SA, Torres-Gutiérrez V, Rodríguez-Flores EJ, Toledo-Román EJ, Rodríguez N, Díaz-Díaz LM, Vázquez-Figueroa LD, Cuesta JM, Grillo-Alvarado V, Amador A, Reyes-Rivera J, García-Arrarás JE., Dev Biol. February 1, 2020; 458 (1): 12-31.


A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo., Martínez-Bartolomé M, Range RC., Development. December 16, 2019; 146 (24):                 


Benzimidazolyl-pyrazolo[3,4-b]pyridinones, Selective Inhibitors of MOLT-4 Leukemia Cell Growth and Sea Urchin Embryo Spiculogenesis: Target Quest., Lichitsky BV, Komogortsev AN, Dudinov AA, Krayushkin MM, Khodot EN, Samet AV, Silyanova EA, Konyushkin LD, Karpov AS, Gorses D, Radimerski T, Semenova MN, Kiselyov AS, Semenov VV., ACS Comb Sci. December 9, 2019; 21 (12): 805-816.


The evolution of a new cell type was associated with competition for a signaling ligand., Ettensohn CA, Adomako-Ankomah A., PLoS Biol. September 18, 2019; 17 (9): e3000460.                    


Visualizing egg and embryonic polarity., Smith LT, Wikramanayake AH., Methods Cell Biol. January 1, 2019; 150 251-268.


Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos., Range RC., Dev Biol. December 15, 2018; 444 (2): 83-92.


MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo., Molina MD, Quirin M, Haillot E, De Crozé N, Range R, Rouel M, Jimenez F, Amrouche R, Chessel A, Lepage T., PLoS Genet. September 17, 2018; 14 (9): e1007621.                


A novel gene''s role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the anterior-posterior Wnt signaling network that governs the establishment of the anterior neuroectoderm in sea urchin embryos., Khadka A, Martínez-Bartolomé M, Burr SD, Range RC., Evodevo. January 22, 2018; 9 1.            


Xenbase: a genomic, epigenomic and transcriptomic model organism database., Karimi K, Fortriede JD, Lotay VS, Burns KA, Wang DZ, Fisher ME, Pells TJ, James-Zorn C, Wang Y, Ponferrada VG, Chu S, Chaturvedi P, Zorn AM, Vize PD., Nucleic Acids Res. January 4, 2018; 46 (D1): D861-D868.        


TPX2 promotes cell proliferation and migration via PLK1 in OC., Ma S, Rong X, Gao F, Yang Y, Wei L., Cancer Biomark. January 1, 2018; 22 (3): 443-451.


The tyrosine Y2502.39 in Frizzled 4 defines a conserved motif important for structural integrity of the receptor and recruitment of Disheveled., Strakova K, Matricon P, Yokota C, Arthofer E, Bernatik O, Rodriguez D, Arenas E, Carlsson J, Bryja V, Schulte G., Cell Signal. October 1, 2017; 38 85-96.


De novo assembly of a transcriptome from the eggs and early embryos of Astropecten aranciacus., Musacchia F, Vasilev F, Borra M, Biffali E, Sanges R, Santella L, Chun JT., PLoS One. September 5, 2017; 12 (9): e0184090.            


A key role for foxQ2 in anterior head and central brain patterning in insects., Kitzmann P, Weißkopf M, Schacht MI, Bucher G., Development. August 15, 2017; 144 (16): 2969-2981.                    


Anti-Cancer Phytometabolites Targeting Cancer Stem Cells., Torquato HF, Goettert MI, Justo GZ, Paredes-Gamero EJ., Curr Genomics. April 1, 2017; 18 (2): 156-174.        


Diversification of spatiotemporal expression and copy number variation of the echinoid hbox12/pmar1/micro1 multigene family., Cavalieri V, Geraci F, Spinelli G., PLoS One. March 28, 2017; 12 (3): e0174404.              


Ubiquitin C-terminal hydrolase37 regulates Tcf7 DNA binding for the activation of Wnt signalling., Han W, Lee H, Han JK., Sci Rep. February 15, 2017; 7 42590.            


Expression of the invertebrate sea urchin P16 protein into mammalian MC3T3 osteoblasts transforms and reprograms them into "osteocyte-like" cells., Alvares K, Ren Y, Feng JQ, Veis A., J Exp Zool B Mol Dev Evol. January 1, 2016; 326 (1): 38-46.


Keeping a lid on nodal: transcriptional and translational repression of nodal signalling., Sampath K, Robertson EJ., Open Biol. January 1, 2016; 6 (1): 150200.        


Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins., Varrella S, Romano G, Costantini S, Ruocco N, Ianora A, Bentley MG, Costantini M., PLoS One. January 1, 2016; 11 (2): e0149734.                


Long-chain bases from Cucumaria frondosa inhibit adipogenesis and regulate lipid metabolism in 3T3-L1 adipocytes., Tian Y, Hu S, Xu H, Wang J, Xue C, Wang Y., Food Sci Biotechnol. January 1, 2016; 25 (6): 1753-1760.


The WNT/β-catenin pathway is involved in the anti-adipogenic activity of cerebrosides from the sea cucumber Cucumaria frondosa., Xu H, Wang F, Wang J, Xu J, Wang Y, Xue C., Food Funct. July 1, 2015; 6 (7): 2396-404.


Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos., Yazaki I, Tsurugaya T, Santella L, Chun JT, Amore G, Kusunoki S, Asada A, Togo T, Akasaka K., Zygote. June 1, 2015; 23 (3): 426-46.                


microRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development., Stepicheva N, Nigam PA, Siddam AD, Peng CF, Song JL., Dev Biol. June 1, 2015; 402 (1): 127-41.


Inhibitory effect of fucosylated chondroitin sulfate from the sea cucumber Acaudina molpadioides on adipogenesis is dependent on Wnt/β-catenin pathway., Xu H, Wang J, Zhang X, Li Z, Wang Y, Xue C., J Biosci Bioeng. January 1, 2015; 119 (1): 85-91.


Dose-dependent nuclear β-catenin response segregates endomesoderm along the sea star primary axis., McCauley BS, Akyar E, Saad HR, Hinman VF., Development. January 1, 2015; 142 (1): 207-17.


Fucoidan from the sea cucumber Acaudina molpadioides exhibits anti-adipogenic activity by modulating the Wnt/β-catenin pathway and down-regulating the SREBP-1c expression., Xu H, Wang J, Chang Y, Xu J, Wang Y, Long T, Xue C., Food Funct. July 25, 2014; 5 (7): 1547-55.


Specification and positioning of the anterior neuroectoderm in deuterostome embryos., Range R., Genesis. March 1, 2014; 52 (3): 222-34.


Expression of wnt and frizzled genes during early sea star development., McCauley BS, Akyar E, Filliger L, Hinman VF., Gene Expr Patterns. December 1, 2013; 13 (8): 437-44.


Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA, Wikramanayake AH., Evodevo. November 4, 2013; 4 (1): 31.        


Transcriptome pyrosequencing of the Antarctic brittle star Ophionotus victoriae., Burns G, Thorndyke MC, Peck LS, Clark MS., Mar Genomics. March 1, 2013; 9 9-15.


Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos., Range RC, Angerer RC, Angerer LM., PLoS Biol. January 1, 2013; 11 (1): e1001467.              


Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling., Peng CJ, Wikramanayake AH., PLoS One. January 1, 2013; 8 (11): e80693.          


Polycyclic aromatic hydrocarbons and dibutyl phthalate disrupt dorsal-ventral axis determination via the Wnt/β-catenin signaling pathway in zebrafish embryos., Fairbairn EA, Bonthius J, Cherr GN., Aquat Toxicol. November 15, 2012; 124-125 188-96.


Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling., Wei Z, Range R, Angerer R, Angerer L., Development. May 1, 2012; 139 (9): 1662-9.


Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos., Sethi AJ, Wikramanayake RM, Angerer RC, Range RC, Angerer LM., Science. February 3, 2012; 335 (6068): 590-3.


Frizzled1/2/7 signaling directs β-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis., Lhomond G, McClay DR, Gache C, Croce JC., Development. February 1, 2012; 139 (4): 816-25.


Wnt6 activates endoderm in the sea urchin gene regulatory network., Croce J, Range R, Wu SY, Miranda E, Lhomond G, Peng JC, Lepage T, McClay DR., Development. August 1, 2011; 138 (15): 3297-306.


[Wnt signaling pathway and the Evo-Devo of deuterostome axis]., Qian GH, Wang YQ., Yi Chuan. July 1, 2011; 33 (7): 684-94.


A gene regulatory network controlling the embryonic specification of endoderm., Peter IS, Davidson EH., Nature. May 29, 2011; 474 (7353): 635-9.


ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo., Yaguchi S, Yaguchi J, Wei Z, Shiba K, Angerer LM, Inaba K., Dev Biol. December 1, 2010; 348 (1): 67-75.


The expression and distribution of Wnt and Wnt receptor mRNAs during early sea urchin development., Stamateris RE, Rafiq K, Ettensohn CA., Gene Expr Patterns. January 1, 2010; 10 (1): 60-4.


Monte Carlo analysis of an ODE Model of the Sea Urchin Endomesoderm Network., Kühn C, Wierling C, Kühn A, Klipp E, Panopoulou G, Lehrach H, Poustka AJ., BMC Syst Biol. August 23, 2009; 3 83.                      


Blocking Dishevelled signaling in the noncanonical Wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation., Byrum CA, Xu R, Bince JM, McClay DR, Wikramanayake AH., Dev Dyn. July 1, 2009; 238 (7): 1649-65.


Gene regulatory network interactions in sea urchin endomesoderm induction., Sethi AJ, Angerer RC, Angerer LM., PLoS Biol. February 3, 2009; 7 (2): e1000029.                        


EGFR signalling is required for Paracentrotus lividus endomesoderm specification., Romancino DP, Montana G, Cavalieri V, Spinelli G, Di Carlo M., Arch Biochem Biophys. June 1, 2008; 474 (1): 167-74.


Krüppel-like is required for nonskeletogenic mesoderm specification in the sea urchin embryo., Yamazaki A, Kawabata R, Shiomi K, Tsuchimoto J, Kiyomoto M, Amemiya S, Yamaguchi M., Dev Biol. February 15, 2008; 314 (2): 433-42.


A spatially dynamic cohort of regulatory genes in the endomesodermal gene network of the sea urchin embryo., Smith J, Kraemer E, Liu H, Theodoris C, Davidson E., Dev Biol. January 15, 2008; 313 (2): 863-75.


A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos., Yaguchi S, Yaguchi J, Angerer RC, Angerer LM., Dev Cell. January 1, 2008; 14 (1): 97-107.


Wnt signaling in the early sea urchin embryo., Kumburegama S, Wikramanayake AH., Methods Mol Biol. January 1, 2008; 469 187-99.


Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1., Range R, Lapraz F, Quirin M, Marro S, Besnardeau L, Lepage T., Development. October 1, 2007; 134 (20): 3649-64.

Page(s): 1 2 Next