Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (24) GO Terms (0) Nucleotides (6) Proteins (3) Interactants (19) Wiki
ECB-GENEPAGE-23174426

Papers associated with LOC115919856



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Effects of Tin on Enzyme Activity in Holothuria grisea (Echinodermata: Holothuroidea)., Pereira TM, Mattar LP, Pereira ER, Merçon J, da Silva AG, Cruz ZM., Bull Environ Contam Toxicol. May 1, 2017; 98 (5): 607-611.


Review: Morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles., Gambardella C, Ferrando S, Gatti AM, Cataldi E, Ramoino P, Aluigi MG, Faimali M, Diaspro A, Falugi C., Environ Toxicol. November 1, 2016; 31 (11): 1552-1562.


Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus)., Mesarič T, Sepčić K, Drobne D, Makovec D, Faimali M, Morgana S, Falugi C, Gambardella C., Aquat Toxicol. June 1, 2015; 163 158-66.


Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles., Gambardella C, Aluigi MG, Ferrando S, Gallus L, Ramoino P, Gatti AM, Rottigni M, Falugi C., Aquat Toxicol. April 15, 2013; 130-131 77-85.


The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes., Johnson G, Moore SW., Comp Biochem Physiol Part D Genomics Proteomics. June 1, 2012; 7 (2): 83-93.


Toxicity of metal oxide nanoparticles in immune cells of the sea urchin., Falugi C, Aluigi MG, Chiantore MC, Privitera D, Ramoino P, Gatti MA, Fabrizi A, Pinsino A, Matranga V., Mar Environ Res. May 1, 2012; 76 114-21.


Acetyl cholinesterase activity and muscle contraction in the sea urchin Lytechinus variegatus (Lamarck) following chronic phosphate exposure., Boettger SA, McClintock JB., Environ Toxicol. March 1, 2012; 27 (4): 193-201.


Amyloid precursor protein 96-110 and beta-amyloid 1-42 elicit developmental anomalies in sea urchin embryos and larvae that are alleviated by neurotransmitter analogs for acetylcholine, serotonin and cannabinoids., Buznikov GA, Nikitina LA, Seidler FJ, Slotkin TA, Bezuglov VV, Milosević I, Lazarević L, Rogac L, Ruzdijić S, Rakić LM., Neurotoxicol Teratol. January 1, 2008; 30 (6): 503-9.


Sea-urchin (Paracentrotus lividus) glutathione S-transferases and cholinesterase activities as biomarkers of environmental contamination., Cunha I, García LM, Guilhermino L., J Environ Monit. April 1, 2005; 7 (4): 288-94.


An invertebrate model of the developmental neurotoxicity of insecticides: effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae., Buznikov GA, Nikitina LA, Bezuglov VV, Lauder JM, Padilla S, Slotkin TA., Environ Health Perspect. July 1, 2001; 109 (7): 651-61.


A new subfamily of high molecular mass CDC2-related kinases with PITAI/VRE motifs., Marqués F, Moreau JL, Peaucellier G, Lozano JC, Schatt P, Picard A, Callebaut I, Perret E, Genevière AM., Biochem Biophys Res Commun. December 29, 2000; 279 (3): 832-7.


[Localization, kinetic parameters, and functions of cholinesterase of the starfish ampulla]., Semenova MN., Ross Fiziol Zh Im I M Sechenova. October 1, 2000; 86 (10): 1268-77.


Pharmacological identification of acetylcholine receptor subtypes in echinoderm smooth muscle (Sclerodactyla briareus)., Devlin CL, Schlosser W, Belz DT, Kodiak K, Nash RF, Zitomer N., Comp Biochem Physiol C Toxicol Pharmacol. January 1, 2000; 125 (1): 53-64.


Cholinesterase activity in sea urchin early embryos may be correlated to the intracellular ion content., De Vries M, Falugi C., Boll Soc Ital Biol Sper. April 1, 1994; 70 (4): 105-9.


[Cholinergic mechanisms in the central nervous system of the sipunculoid Physcosoma japonicum]., Ger BA, Zeĭmal' EV, Kratskin IL, Lavrent'eva VV., Zh Evol Biokhim Fiziol. January 1, 1977; 13 (2): 179-84.


Isotonic and isometric responses of different tonic muscles to agonists and antagonists., Michelson MJ, Shelkovnikov SA., Br J Pharmacol. April 1, 1976; 56 (4): 457-67.


[Heat stability of cholinesterase and non-specific esterases during development of hybrids of the sea urchins Stongylocentrotus droebachiensis and S. intermedius]., Ivanenkov VV, Korobtsov GN., Ontogenez. January 1, 1976; 7 (4): 341-9.


[Localization of cholinesterase-Activity during gastrulation of the sea urchin embryo]., Kocher-Becker U, Drews U, Drews U., Wilehm Roux Arch Dev Biol. June 1, 1975; 178 (2): 157-165.


Cholinesterase in embryonic development., Drews U., Prog Histochem Cytochem. January 1, 1975; 7 (3): 1-52.


Coupled levels of thermal stability of aldolase and cholinesterase of muscle homogenates of closely related species of aquatic animals., Kusakina AA., Sov J Ecol. May 1, 1974; 4 (4): 345-9.


Changes in esterase and cholinesterase isozymes in normally developing, animalized and radialized embryos of Arbacia punctulata., O'Melia AF., Exp Cell Res. August 1, 1972; 73 (2): 469-74.


Acetylcholine and cholinesterase in the radial nerve of Asterias rubens., Pentreath VW, Cottrell GA., Comp Biochem Physiol. December 1, 1968; 27 (3): 775-85.


[The effect of cholinesterase on fertilized eggs of Echinodermata]., Buznikov GA, Markova LN., Dokl Akad Nauk SSSR. July 11, 1968; 181 (2): 497-500.


Cholinesterase in developing sea-urchin eggs., AUGUSTINSSON KB, GUSTAFSON T., J Cell Comp Physiol. October 1, 1949; 34 (2): 311-21.

???pagination.result.page??? 1