Results 1 - 50 of 98 results
Ginkgo biloba treatments reverse the impairment of conditioned suppression acquisition induced by GluN2B-NMDA and 5-HT1A receptor blockade: Modulatory effects of the circuitry of the dorsal hippocampal formation. , Zamberlam CR, Tilger MAS, Moraes L, Cerutti JM, Cerutti SM., Physiol Behav. October 1, 2019; 209 112534.
Transglutaminase Activity Determines Nuclear Localization of Serotonin Immunoreactivity in the Early Embryos of Invertebrates and Vertebrates. , Ivashkin E, Melnikova V, Kurtova A, Brun NR, Obukhova A, Khabarova MY, Yakusheff A, Adameyko I, Gribble KE, Voronezhskaya EE., ACS Chem Neurosci. August 21, 2019; 10 (8): 3888-3899.
Radiobiology at the forefront: Hanns Langendorff and two of his disciples. , Streffer C., Int J Radiat Biol. July 1, 2019; 95 (7): 1029-1042.
The Effect of Melatonin on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus. , Ding K, Zhang L , Zhang T, Yang H , Brinkman R., Front Physiol. February 26, 2019; 10 221.
Differences in Small Molecule Neurotransmitter Profiles From the Crown-of-Thorns Seastar Radial Nerve Revealed Between Sexes and Following Food-Deprivation. , Smith MK, Bose U, Mita M , Hall MR, Elizur A, Motti CA, Cummins SF., Front Endocrinol (Lausanne). August 6, 2018; 9 551.
Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System. , Wood NJ, Mattiello T, Rowe ML, Ward L, Perillo M , Arnone MI , Elphick MR , Oliveri P ., Front Endocrinol (Lausanne). August 6, 2018; 9 628.
Distribution and dynamic expression of serotonin and dopamine in the nervous system and ovary of Holothuria scabra during ovarian maturation. , Chaiyamoon A, Tinikul R, Chaichotranunt S, Poomthong T, Suphamungmee W, Sobhon P, Tinikul Y., J Comp Physiol A Neuroethol Sens Neural Behav Physiol. April 1, 2018; 204 (4): 391-407.
SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning. , Anishchenko E, Arnone MI , D'Aniello S., Evodevo. January 22, 2018; 9 5.
Alteration of neurotransmission and skeletogenesis in sea urchin Arbacia lixula embryos exposed to copper oxide nanoparticles. , Cappello T, Vitale V, Oliva S, Villari V, Mauceri A, Fasulo S, Maisano M., Comp Biochem Physiol C Toxicol Pharmacol. September 1, 2017; 199 20-27.
Effects of monocrotophos pesticide on cholinergic and dopaminergic neurotransmitter systems during early development in the sea urchin Hemicentrotus pulcherrimus. , Zhang X, Li S, Wang C, Tian H, Wang W, Ru S., Toxicol Appl Pharmacol. August 1, 2017; 328 46-53.
Profiles of amino acids and biogenic amines in the plasma of Cri-du- Chat patients. , Furtado DZS, de Moura Leite FBV, Barreto CN, Faria B, Jedlicka LDL, de Jesus Silva E, da Silva HDT, Bechara EJH, Assunção NA., J Pharm Biomed Anal. June 5, 2017; 140 137-145.
Discovering novel phenotypes with automatically inferred dynamic models: a partial melanocyte conversion in Xenopus. , Lobo D, Lobikin M, Levin M., Sci Rep. January 27, 2017; 7 41339.
Identification and functional characterisation of 5-HT4 receptor in sea cucumber Apostichopus japonicus (Selenka). , Wang T, Yang Z, Zhou N, Sun L, Lv Z , Wu C., Sci Rep. January 6, 2017; 7 40247.
Expression and functional activity of neurotransmitter system components in sea urchins'' early development. , Nikishin DA, Milošević I, Gojković M, Rakić L, Bezuglov VV, Shmukler YB., Zygote. April 1, 2016; 24 (2): 206-18.
Neurogenic gene regulatory pathways in the sea urchin embryo. , Wei Z, Angerer LM , Angerer RC ., Development. January 15, 2016; 143 (2): 298-305.
Immunohistochemical and ultrastructural properties of the larval ciliary band-associated strand in the sea urchin Hemicentrotus pulcherrimus. , Katow H, Katow T, Yoshida H, Kiyomoto M , Uemura I., Front Zool. January 1, 2016; 13 27.
Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein. , Wilkie IC, Fassini D, Cullorà E, Barbaglio A, Tricarico S, Sugni M, Del Giacco L, Candia Carnevali MD., PLoS One. March 16, 2015; 10 (3): e0120339.
Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords. , Kaul-Strehlow S, Urata M, Minokawa T , Stach T, Wanninger A., Org Divers Evol. January 1, 2015; 15 (2): 405-422.
bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo. , Yaguchi S , Yaguchi J, Inaba K., Sci Rep. October 31, 2014; 4 6852.
Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha). , Børve A, Hejnol A., Front Zool. May 9, 2014; 11 50.
Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae. , Katow H, Katow T, Abe K, Ooka S, Kiyomoto M , Hamanaka G., Biol Open. January 15, 2014; 3 (1): 94-102.
Effects of monocrotophos pesticide on serotonin metabolism during early development in the sea urchin, Hemicentrotus pulcherrimus. , Xu L, Tian H, Wang W, Ru S., Environ Toxicol Pharmacol. September 1, 2012; 34 (2): 537-547.
Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo. , Yaguchi J, Angerer LM , Inaba K, Yaguchi S ., Dev Biol. March 1, 2012; 363 (1): 74-83.
[Expression of transmitter receptor genes in early development of sea urchin Paracentrotus lividus]. , Nikishin DA, Semenova MN, Shmukler IuB., Ontogenez. January 1, 2012; 43 (3): 212-6.
The neurotoxic effects of monocrotophos on the formation of the serotonergic nervous system and swimming activity in the larvae of the sea urchin Hemicentrotus pulcherrimus. , Yao D, Ru S, Katow H., Environ Toxicol Pharmacol. September 1, 2010; 30 (2): 181-7.
Serotonin and its metabolism in basal deuterostomes: insights from Strongylocentrotus purpuratus and Xenoturbella bocki. , Squires LN, Rubakhin SS, Wadhams AA, Talbot KN, Nakano H, Moroz LL, Sweedler JV., J Exp Biol. August 1, 2010; 213 (Pt 15): 2647-54.
A putative ''pre-nervous'' endocannabinoid system in early echinoderm development. , Buznikov GA, Nikitina LA, Bezuglov VV, Francisco ME, Boysen G, Obispo-Peak IN, Peterson RE, Weiss ER, Schuel H , Temple BR, Morrow AL, Lauder JM., Dev Neurosci. March 1, 2010; 32 (1): 1-18.
[A "micromere model" of cellular interactions in sea urchin embryos]. , Shmukler IuB., Biofizika. January 1, 2010; 55 (3): 451-9.
The sea urchin embryo: a model to study Alzheimer''s beta amyloid induced toxicity. , Pellicanò M, Picone P, Cavalieri V, Carrotta R, Spinelli G , Di Carlo M ., Arch Biochem Biophys. March 1, 2009; 483 (1): 120-6.
Neural architecture of the brachiolaria larva of the starfish, Asterina pectinifera. , Murabe N, Hatoyama H, Hase S, Komatsu M, Burke RD , Kaneko H, Nakajima Y., J Comp Neurol. July 20, 2008; 509 (3): 271-82.
5-HT-receptive structures are localized in the interblastomere cleft of Paracentrotus lividus early embryos. , Shmukler YB, Silvestre F, Tosti E., Zygote. February 1, 2008; 16 (1): 79-86.
Sea urchin embryonic development provides a model for evaluating therapies against beta-amyloid toxicity. , Buznikov GA, Nikitina LA, Bezuglov VV, Milosević I, Lazarević L, Rogac L, Ruzdijić S, Slotkin TA, Rakić LM., Brain Res Bull. January 31, 2008; 75 (1): 94-100.
Amyloid precursor protein 96-110 and beta-amyloid 1-42 elicit developmental anomalies in sea urchin embryos and larvae that are alleviated by neurotransmitter analogs for acetylcholine, serotonin and cannabinoids. , Buznikov GA, Nikitina LA, Seidler FJ, Slotkin TA, Bezuglov VV, Milosević I, Lazarević L, Rogac L, Ruzdijić S, Rakić LM., Neurotoxicol Teratol. January 1, 2008; 30 (6): 503-9.
The sea urchin embryo, an invertebrate model for mammalian developmental neurotoxicity, reveals multiple neurotransmitter mechanisms for effects of chlorpyrifos: therapeutic interventions and a comparison with the monoamine depleter, reserpine. , Buznikov GA, Nikitina LA, Rakić LM, Milosević I, Bezuglov VV, Lauder JM, Slotkin TA., Brain Res Bull. September 28, 2007; 74 (4): 221-31.
Serotonin stimulates [Ca2+]i elevation in ciliary ectodermal cells of echinoplutei through a serotonin receptor cell network in the blastocoel. , Katow H, Yaguchi S , Kyozuka K., J Exp Biol. February 1, 2007; 210 (Pt 3): 403-12.
A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. , Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S , Burke RD , Herwig R, Lehrach H, Panopoulou G., Genome Biol. January 1, 2007; 8 (5): R85.
[Effect of local microapplication of serotoninergic drugs on membrane currents of Paracentrotus lividus early embryos]. , Shmukler IuB, Tosti E, Silvestre F., Ontogenez. January 1, 2007; 38 (4): 254-61.
[Preneural transmitters as regulators of embryogenesis. Current state of the problem]. , Buznikov GA., Ontogenez. January 1, 2007; 38 (4): 262-70.
Embryonic expression of engrailed in sea urchins. , Yaguchi S , Nakajima Y, Wang D, Burke RD ., Gene Expr Patterns. June 1, 2006; 6 (5): 566-71.
The pre-nervous serotonergic system of developing sea urchin embryos and larvae: pharmacologic and immunocytochemical evidence. , Buznikov GA, Peterson RE, Nikitina LA, Bezuglov VV, Lauder JM., Neurochem Res. January 1, 2005; 30 (6-7): 825-37.
The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae. , Katow H, Yaguchi S , Kiyomoto M , Washio M., Mech Dev. April 1, 2004; 121 (4): 325-37.
[Fluorescent-labeled lipophilic analogues of serotonin, dopamine, and acetylcholine: synthesis, mass spectrometry, and biological activity]. , Bezyglov VV, Gretskaia NM, Esipov SE, Poliakov NB, Nikitina LA, Buznikov GA, Lauder J., Bioorg Khim. January 1, 2004; 30 (5): 512-9.
Expression of tryptophan 5-hydroxylase gene during sea urchin neurogenesis and role of serotonergic nervous system in larval behavior. , Yaguchi S , Katow H., J Comp Neurol. November 10, 2003; 466 (2): 219-29.
Innervation of holothurian body wall muscle: inhibitory effects and localization of 5-HT. , Inoue M, Tamori M, Motokawa T., Zoolog Sci. November 1, 2002; 19 (11): 1217-22.
Increase of cAMP upon release from prophase arrest in surf clam oocytes. , Yi JH, Lefièvre L, Gagnon C, Anctil M, Dubé F., J Cell Sci. January 15, 2002; 115 (Pt 2): 311-20.
[Serotoninergic processes in cells of early embryos of the sea urchin Paracentrotus lividus]. , Shmukler IuB, Tosti E., Ross Fiziol Zh Im I M Sechenova. November 1, 2001; 87 (11): 1557-64.
Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis. , Buznikov GA, Lambert HW, Lauder JM., Cell Tissue Res. August 1, 2001; 305 (2): 177-86.
Development of serotonin-like and SALMFamide-like immunoreactivity in the nervous system of the sea urchin Psammechinus miliaris. , Beer AJ, Moss C, Thorndyke M., Biol Bull. June 1, 2001; 200 (3): 268-80.
Expression patterns of HNK-1 carbohydrate and serotonin in sea urchin, amphioxus, and lamprey, with reference to the possible evolutionary origin of the neural crest. , Morikawa K, Tsuneki K, Ito K., Zoology (Jena). January 1, 2001; 104 (2): 81-90.
[Polyenic acid 5-hydroxytryptamides and 3-hydroxytyramides as tools for studying of the pre-nervous biogenic monoamine functions]. , Buznikov GA, Bezuglov VV., Ross Fiziol Zh Im I M Sechenova. September 1, 2000; 86 (9): 1093-108.