Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Gene Literature (98) GO Terms (0) Nucleotides (9) Proteins (2) Interactants (106) Wiki

Papers associated with LOC100888622

Limit to papers also referencing gene:

Results 1 - 50 of 98 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Ginkgo biloba treatments reverse the impairment of conditioned suppression acquisition induced by GluN2B-NMDA and 5-HT1A receptor blockade: Modulatory effects of the circuitry of the dorsal hippocampal formation., Zamberlam CR, Tilger MAS, Moraes L, Cerutti JM, Cerutti SM., Physiol Behav. October 1, 2019; 209 112534.

Transglutaminase Activity Determines Nuclear Localization of Serotonin Immunoreactivity in the Early Embryos of Invertebrates and Vertebrates., Ivashkin E, Melnikova V, Kurtova A, Brun NR, Obukhova A, Khabarova MY, Yakusheff A, Adameyko I, Gribble KE, Voronezhskaya EE., ACS Chem Neurosci. August 21, 2019; 10 (8): 3888-3899.

Radiobiology at the forefront: Hanns Langendorff and two of his disciples., Streffer C., Int J Radiat Biol. July 1, 2019; 95 (7): 1029-1042.

The Effect of Melatonin on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus., Ding K, Zhang L, Zhang T, Yang H, Brinkman R., Front Physiol. February 26, 2019; 10 221.        

Distribution and dynamic expression of serotonin and dopamine in the nervous system and ovary of Holothuria scabra during ovarian maturation., Chaiyamoon A, Tinikul R, Chaichotranunt S, Poomthong T, Suphamungmee W, Sobhon P, Tinikul Y., J Comp Physiol A Neuroethol Sens Neural Behav Physiol. April 1, 2018; 204 (4): 391-407.

SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning., Anishchenko E, Arnone MI, D'Aniello S., Evodevo. January 22, 2018; 9 5.          

Differences in Small Molecule Neurotransmitter Profiles From the Crown-of-Thorns Seastar Radial Nerve Revealed Between Sexes and Following Food-Deprivation., Smith MK, Bose U, Mita M, Hall MR, Elizur A, Motti CA, Cummins SF., Front Endocrinol (Lausanne). January 1, 2018; 9 551.              

Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System., Wood NJ, Mattiello T, Rowe ML, Ward L, Perillo M, Arnone MI, Elphick MR, Oliveri P., Front Endocrinol (Lausanne). January 1, 2018; 9 628.            

Alteration of neurotransmission and skeletogenesis in sea urchin Arbacia lixula embryos exposed to copper oxide nanoparticles., Cappello T, Vitale V, Oliva S, Villari V, Mauceri A, Fasulo S, Maisano M., Comp Biochem Physiol C Toxicol Pharmacol. September 1, 2017; 199 20-27.

Effects of monocrotophos pesticide on cholinergic and dopaminergic neurotransmitter systems during early development in the sea urchin Hemicentrotus pulcherrimus., Zhang X, Li S, Wang C, Tian H, Wang W, Ru S., Toxicol Appl Pharmacol. August 1, 2017; 328 46-53.

Profiles of amino acids and biogenic amines in the plasma of Cri-du-Chat patients., Furtado DZS, de Moura Leite FBV, Barreto CN, Faria B, Jedlicka LDL, de Jesus Silva E, da Silva HDT, Bechara EJH, Assunção NA., J Pharm Biomed Anal. June 5, 2017; 140 137-145.

Discovering novel phenotypes with automatically inferred dynamic models: a partial melanocyte conversion in Xenopus., Lobo D, Lobikin M, Levin M., Sci Rep. January 27, 2017; 7 41339.          

Identification and functional characterisation of 5-HT4 receptor in sea cucumber Apostichopus japonicus (Selenka)., Wang T, Yang Z, Zhou N, Sun L, Lv Z, Wu C., Sci Rep. January 6, 2017; 7 40247.              

Expression and functional activity of neurotransmitter system components in sea urchins'' early development., Nikishin DA, Milošević I, Gojković M, Rakić L, Bezuglov VV, Shmukler YB., Zygote. April 1, 2016; 24 (2): 206-18.

Neurogenic gene regulatory pathways in the sea urchin embryo., Wei Z, Angerer LM, Angerer RC., Development. January 15, 2016; 143 (2): 298-305.

Immunohistochemical and ultrastructural properties of the larval ciliary band-associated strand in the sea urchin Hemicentrotus pulcherrimus., Katow H, Katow T, Yoshida H, Kiyomoto M, Uemura I., Front Zool. January 1, 2016; 13 27.                  

Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein., Wilkie IC, Fassini D, Cullorà E, Barbaglio A, Tricarico S, Sugni M, Del Giacco L, Candia Carnevali MD., PLoS One. January 1, 2015; 10 (3): e0120339.                

Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords., Kaul-Strehlow S, Urata M, Minokawa T, Stach T, Wanninger A., Org Divers Evol. January 1, 2015; 15 (2): 405-422.              

bicaudal-C is required for the formation of anterior neurogenic ectoderm in the sea urchin embryo., Yaguchi S, Yaguchi J, Inaba K., Sci Rep. October 31, 2014; 4 6852.            

Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha)., Børve A, Hejnol A., Front Zool. May 9, 2014; 11 50.                  

Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae., Katow H, Katow T, Abe K, Ooka S, Kiyomoto M, Hamanaka G., Biol Open. January 15, 2014; 3 (1): 94-102.              

Effects of monocrotophos pesticide on serotonin metabolism during early development in the sea urchin, Hemicentrotus pulcherrimus., Xu L, Tian H, Wang W, Ru S., Environ Toxicol Pharmacol. September 1, 2012; 34 (2): 537-547.

Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo., Yaguchi J, Angerer LM, Inaba K, Yaguchi S., Dev Biol. March 1, 2012; 363 (1): 74-83.

[Expression of transmitter receptor genes in early development of sea urchin Paracentrotus lividus]., Nikishin DA, Semenova MN, Shmukler IuB., Ontogenez. January 1, 2012; 43 (3): 212-6.

The neurotoxic effects of monocrotophos on the formation of the serotonergic nervous system and swimming activity in the larvae of the sea urchin Hemicentrotus pulcherrimus., Yao D, Ru S, Katow H., Environ Toxicol Pharmacol. September 1, 2010; 30 (2): 181-7.

Serotonin and its metabolism in basal deuterostomes: insights from Strongylocentrotus purpuratus and Xenoturbella bocki., Squires LN, Rubakhin SS, Wadhams AA, Talbot KN, Nakano H, Moroz LL, Sweedler JV., J Exp Biol. August 1, 2010; 213 (Pt 15): 2647-54.

A putative ''pre-nervous'' endocannabinoid system in early echinoderm development., Buznikov GA, Nikitina LA, Bezuglov VV, Francisco ME, Boysen G, Obispo-Peak IN, Peterson RE, Weiss ER, Schuel H, Temple BR, Morrow AL, Lauder JM., Dev Neurosci. March 1, 2010; 32 (1): 1-18.

[A "micromere model" of cellular interactions in sea urchin embryos]., Shmukler IuB., Biofizika. January 1, 2010; 55 (3): 451-9.

The sea urchin embryo: a model to study Alzheimer''s beta amyloid induced toxicity., Pellicanò M, Picone P, Cavalieri V, Carrotta R, Spinelli G, Di Carlo M., Arch Biochem Biophys. March 1, 2009; 483 (1): 120-6.

Neural architecture of the brachiolaria larva of the starfish, Asterina pectinifera., Murabe N, Hatoyama H, Hase S, Komatsu M, Burke RD, Kaneko H, Nakajima Y., J Comp Neurol. July 20, 2008; 509 (3): 271-82.

5-HT-receptive structures are localized in the interblastomere cleft of Paracentrotus lividus early embryos., Shmukler YB, Silvestre F, Tosti E., Zygote. February 1, 2008; 16 (1): 79-86.

Sea urchin embryonic development provides a model for evaluating therapies against beta-amyloid toxicity., Buznikov GA, Nikitina LA, Bezuglov VV, Milosević I, Lazarević L, Rogac L, Ruzdijić S, Slotkin TA, Rakić LM., Brain Res Bull. January 31, 2008; 75 (1): 94-100.

Amyloid precursor protein 96-110 and beta-amyloid 1-42 elicit developmental anomalies in sea urchin embryos and larvae that are alleviated by neurotransmitter analogs for acetylcholine, serotonin and cannabinoids., Buznikov GA, Nikitina LA, Seidler FJ, Slotkin TA, Bezuglov VV, Milosević I, Lazarević L, Rogac L, Ruzdijić S, Rakić LM., Neurotoxicol Teratol. January 1, 2008; 30 (6): 503-9.

The sea urchin embryo, an invertebrate model for mammalian developmental neurotoxicity, reveals multiple neurotransmitter mechanisms for effects of chlorpyrifos: therapeutic interventions and a comparison with the monoamine depleter, reserpine., Buznikov GA, Nikitina LA, Rakić LM, Milosević I, Bezuglov VV, Lauder JM, Slotkin TA., Brain Res Bull. September 28, 2007; 74 (4): 221-31.

Serotonin stimulates [Ca2+]i elevation in ciliary ectodermal cells of echinoplutei through a serotonin receptor cell network in the blastocoel., Katow H, Yaguchi S, Kyozuka K., J Exp Biol. February 1, 2007; 210 (Pt 3): 403-12.

A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks., Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G., Genome Biol. January 1, 2007; 8 (5): R85.                

[Effect of local microapplication of serotoninergic drugs on membrane currents of Paracentrotus lividus early embryos]., Shmukler IuB, Tosti E, Silvestre F., Ontogenez. January 1, 2007; 38 (4): 254-61.

[Preneural transmitters as regulators of embryogenesis. Current state of the problem]., Buznikov GA., Ontogenez. January 1, 2007; 38 (4): 262-70.

Embryonic expression of engrailed in sea urchins., Yaguchi S, Nakajima Y, Wang D, Burke RD., Gene Expr Patterns. June 1, 2006; 6 (5): 566-71.

The pre-nervous serotonergic system of developing sea urchin embryos and larvae: pharmacologic and immunocytochemical evidence., Buznikov GA, Peterson RE, Nikitina LA, Bezuglov VV, Lauder JM., Neurochem Res. January 1, 2005; 30 (6-7): 825-37.

The 5-HT receptor cell is a new member of secondary mesenchyme cell descendants and forms a major blastocoelar network in sea urchin larvae., Katow H, Yaguchi S, Kiyomoto M, Washio M., Mech Dev. April 1, 2004; 121 (4): 325-37.

[Fluorescent-labeled lipophilic analogues of serotonin, dopamine, and acetylcholine: synthesis, mass spectrometry, and biological activity]., Bezyglov VV, Gretskaia NM, Esipov SE, Poliakov NB, Nikitina LA, Buznikov GA, Lauder J., Bioorg Khim. January 1, 2004; 30 (5): 512-9.

Expression of tryptophan 5-hydroxylase gene during sea urchin neurogenesis and role of serotonergic nervous system in larval behavior., Yaguchi S, Katow H., J Comp Neurol. November 10, 2003; 466 (2): 219-29.

Innervation of holothurian body wall muscle: inhibitory effects and localization of 5-HT., Inoue M, Tamori M, Motokawa T., Zoolog Sci. November 1, 2002; 19 (11): 1217-22.

Increase of cAMP upon release from prophase arrest in surf clam oocytes., Yi JH, Lefièvre L, Gagnon C, Anctil M, Dubé F., J Cell Sci. January 15, 2002; 115 (Pt 2): 311-20.

[Serotoninergic processes in cells of early embryos of the sea urchin Paracentrotus lividus]., Shmukler IuB, Tosti E., Ross Fiziol Zh Im I M Sechenova. November 1, 2001; 87 (11): 1557-64.

Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis., Buznikov GA, Lambert HW, Lauder JM., Cell Tissue Res. August 1, 2001; 305 (2): 177-86.

Development of serotonin-like and SALMFamide-like immunoreactivity in the nervous system of the sea urchin Psammechinus miliaris., Beer AJ, Moss C, Thorndyke M., Biol Bull. June 1, 2001; 200 (3): 268-80.

Expression patterns of HNK-1 carbohydrate and serotonin in sea urchin, amphioxus, and lamprey, with reference to the possible evolutionary origin of the neural crest., Morikawa K, Tsuneki K, Ito K., Zoology (Jena). January 1, 2001; 104 (2): 81-90.

[Polyenic acid 5-hydroxytryptamides and 3-hydroxytyramides as tools for studying of the pre-nervous biogenic monoamine functions]., Buznikov GA, Bezuglov VV., Ross Fiziol Zh Im I M Sechenova. September 1, 2000; 86 (9): 1093-108.

Page(s): 1 2 Next