Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Expression Gene Literature (11969) GO Terms (0) Nucleotides (8) Proteins (2) Interactants (1441) Wiki
ECB--23018802

Papers associated with LOC100887844 (and LOC100889101)



???displayGene.coCitedPapers???
Show all LOC100887844 papers

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Separation, purification, structural analysis and immune-enhancing activity of sulfated polysaccharide isolated from sea cucumber viscera., Yang D, Lin F, Huang Y, Ye J, Xiao M., Int J Biol Macromol. July 15, 2020; 155 1003-1018.


Anticoagulant and Antithrombotic Properties of Three Structurally Correlated Sea Urchin Sulfated Glycans and Their Low-Molecular-Weight Derivatives., Vasconcelos AA, Sucupira ID, Guedes AL, Queiroz IN, Frattani FS, Fonseca RJ, Pomin VH., Mar Drugs. August 30, 2018; 16 (9):         


Pharmacological Potential of Sea Cucumbers., Khotimchenko Y., Int J Mol Sci. May 2, 2018; 19 (5):                 


The Sea as a Rich Source of Structurally Unique Glycosaminoglycans and Mimetics., Vasconcelos AA, Pomin VH., Microorganisms. August 28, 2017; 5 (3):             


Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities., Jiao H, Shang X, Dong Q, Wang S, Liu X, Zheng H, Lu X., Mar Drugs. September 16, 2015; 13 (9): 5882-900.                


Spine and test skeletal matrices of the Mediterranean sea urchin Arbacia lixula--a comparative characterization of their sugar signature., Kanold JM, Guichard N, Immel F, Plasseraud L, Corneillat M, Alcaraz G, Brümmer F, Marin F., FEBS J. May 1, 2015; 282 (10): 1891-905.


Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus., Liu X, Sun Z, Zhang M, Meng X, Xia X, Yuan W, Xue F, Liu C., Carbohydr Polym. November 6, 2012; 90 (4): 1664-70.


HpSumf1 is involved in the activation of sulfatases responsible for regulation of skeletogenesis during sea urchin development., Sakuma T, Ohnishi K, Fujita K, Ochiai H, Sakamoto N, Yamamoto T., Dev Genes Evol. August 1, 2011; 221 (3): 157-66.


HpSulf, a heparan sulfate 6-O-endosulfatase, is involved in the regulation of VEGF signaling during sea urchin development., Fujita K, Takechi E, Sakamoto N, Sumiyoshi N, Izumi S, Miyamoto T, Matsuura S, Tsurugaya T, Akasaka K, Yamamoto T., Mech Dev. April 1, 2010; 127 (3-4): 235-45.


PDGF-A interactions with fibronectin reveal a critical role for heparan sulfate in directed cell migration during Xenopus gastrulation., Smith EM, Mitsi M, Nugent MA, Symes K., Proc Natl Acad Sci U S A. December 22, 2009; 106 (51): 21683-8.


Seminal fluid from sea urchin (Lytechinus variegatus) contains complex sulfated polysaccharides linked to protein., Cinelli LP, Vilela-Silva AC, Mourão PA., Comp Biochem Physiol B Biochem Mol Biol. September 1, 2009; 154 (1): 108-12.


Cell-surface arylsulfatase A and B on sinusoidal endothelial cells, hepatocytes, and Kupffer cells in mammalian livers., Mitsunaga-Nakatsubo K, Kusunoki S, Kawakami H, Akasaka K, Akimoto Y., Med Mol Morphol. June 1, 2009; 42 (2): 63-9.


The specificity of interactions between proteins and sulfated polysaccharides., Mulloy B., An Acad Bras Cienc. December 1, 2005; 77 (4): 651-64.


D-galactose-specific sea urchin lectin sugar-specifically inhibited histamine release induced by datura stramonium agglutinin: differences between sugar-specific effects of sea urchin lectin and those of D-galactose- or L-fucose-specific plant lectins., Suzuki-Nishimura T, Nakagawa H, Uchida MK., Jpn J Pharmacol. April 1, 2001; 85 (4): 443-52.


Cloning and characterization of cDNA for syndecan core protein in sea urchin embryos., Tomita K, Yamasu K, Suyemitsu T., Dev Growth Differ. October 1, 2000; 42 (5): 449-58.


The soluble sperm factor that causes Ca2+ release from sea-urchin (Lytechinus pictus) egg homogenates also triggers Ca2+ oscillations after injection into mouse eggs., Parrington J, Jones KT, Lai A, Swann K., Biochem J. July 1, 1999; 341 ( Pt 1) 1-4.


A putative role for carbohydrates in sea urchin gastrulation., Latham VH, Tully MJ, Oppenheimer SB., Acta Histochem. July 1, 1999; 101 (3): 293-303.


Adhesive and growth properties of lectin from the ascidian Didemnum ternatanum on cultivated marine invertebrate cells., Odintsova NA, Belogortseva NI, Ermak AV, Molchanova VI, Luk'yanov PA., Biochim Biophys Acta. January 11, 1999; 1448 (3): 381-9.


Isolation, biochemical and immunological characterisation of two sea urchin glycoproteins bearing sulphated poly(sialic acid) polysaccharides rich in N-glycolyl neuraminic acid., Karamanos NK, Manouras A, Anagnostides S, Makatsori E, Tsegenidis T, Antonopoulos CA., Biochimie. January 1, 1996; 78 (3): 171-82.


An ECM-bound, PDGF-like growth factor and a TGF-alpha-like growth factor are required for gastrulation and spiculogenesis in the Lytechinus embryo., Govindarajan V, Ramachandran RK, George JM, Shakes DC, Tomlinson CR., Dev Biol. December 1, 1995; 172 (2): 541-51.


The SEA module: a new extracellular domain associated with O-glycosylation., Bork P, Patthy L., Protein Sci. July 1, 1995; 4 (7): 1421-5.


Morquio disease: isolation, characterization and expression of full-length cDNA for human N-acetylgalactosamine-6-sulfate sulfatase., Tomatsu S, Fukuda S, Masue M, Sukegawa K, Fukao T, Yamagishi A, Hori T, Iwata H, Ogawa T, Nakashima Y., Biochem Biophys Res Commun. December 16, 1991; 181 (2): 677-83.


Hunter syndrome: isolation of an iduronate-2-sulfatase cDNA clone and analysis of patient DNA., Wilson PJ, Morris CP, Anson DS, Occhiodoro T, Bielicki J, Clements PR, Hopwood JJ., Proc Natl Acad Sci U S A. November 1, 1990; 87 (21): 8531-5.


Phylogenetic conservation of arylsulfatases. cDNA cloning and expression of human arylsulfatase B., Peters C, Schmidt B, Rommerskirch W, Rupp K, Zühlsdorf M, Vingron M, Meyer HE, Pohlmann R, von Figura K., J Biol Chem. February 25, 1990; 265 (6): 3374-81.


Ontogeny of the basal lamina in the sea urchin embryo., Wessel GM, Marchase RB, McClay DR., Dev Biol. May 1, 1984; 103 (1): 235-45.


Sulfated polysaccharides and cell differentiation in the sea urchin embryo., Løvtrup-Rein H, Løvtrup S., Exp Cell Biol. January 1, 1984; 52 (6): 383-8.


Water-soluble lipoproteins from yolk granules in sea urchin eggs. II. Chemical composition., Deguchi K, Kawashima S, Ii I, Ueta N., J Biochem. June 1, 1979; 85 (6): 1519-25.


Preliminary observations on the synthesis of glycosaminoglycans in the sea urchin embryo., Nakatsuji N, Løvtrup S., Arch Anat Microsc Morphol Exp. January 1, 1978; 67 (3): 185-9.


Isolation and characterization of the vitelline layer of sea urchin eggs., Glabe CG, Vacquier VD., J Cell Biol. November 1, 1977; 75 (2 Pt 1): 410-21.


A new neuraminic acid derivative and three types of glycopeptides isolated from the Cuvierian tubules of the sea cucumber Holothuria forskali., Isemura M, Zahn RK, Schmid K., Biochem J. March 1, 1973; 131 (3): 509-21.


Metabolism of glucosamine in the early sea urchin development., IMMERS J., Exp Cell Res. December 1, 1958; 15 (3): 595-603.


Hexokinase activity from eggs of the sea urchin Arbacia punctulata., KRAHL ME, KELTCH AK, WALTERS CP, CLOWES GH., J Gen Physiol. September 20, 1954; 38 (1): 31-9.

???pagination.result.page??? 1