Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Profile Publications (96)
ECB-PERS-4176

Publications By David Epel

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???


Cost, effectiveness and environmental relevance of multidrug transporters in sea urchin embryos., Cole BJ, Hamdoun A, Epel D., J Exp Biol. October 15, 2013; 216 (Pt 20): 3896-905.


Multidrug efflux transporters limit accumulation of inorganic, but not organic, mercury in sea urchin embryos., Bosnjak I, Uhlinger KR, Heim W, Smital T, Franekić-Colić J, Coale K, Epel D, Hamdoun A., Environ Sci Technol. November 1, 2009; 43 (21): 8374-80.


Apoptosis in early development of the sea urchin, Strongylocentrotus purpuratus., Vega Thurber R, Epel D., Dev Biol. March 1, 2007; 303 (1): 336-46.


The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome., Goldstone JV, Hamdoun A, Cole BJ, Howard-Ashby M, Nebert DW, Scally M, Dean M, Epel D, Hahn ME, Stegeman JJ., Dev Biol. December 1, 2006; 300 (1): 366-84.


The genome of the sea urchin Strongylocentrotus purpuratus., Sea Urchin Genome Sequencing Consortium, Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Bellé R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Genevière AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron KF, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallböök F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su YH, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Röttinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu SY, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu LL, Thorn R, Wright R., Science. November 10, 2006; 314 (5801): 941-52.


The sea urchin embryo as a model for studying efflux transporters: roles and energy cost., Epel D, Cole B, Hamdoun A, Thurber RV., Mar Environ Res. July 1, 2006; 62 Suppl S1-4.


Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos (Strongylocentrotus purpuratus)., Hamdoun AM, Cherr GN, Roepke TA, Epel D., Dev Biol. December 15, 2004; 276 (2): 452-62.


Phosphoinositide metabolism at fertilization of sea urchin eggs measured with a GFP-probe., Thaler CD, Kuo RC, Patton C, Preston CM, Yagisawa H, Epel D., Dev Growth Differ. October 1, 2004; 46 (5): 413-23.


Emerging contaminants--pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms., Smital T, Luckenbach T, Sauerborn R, Hamdoun AM, Vega RL, Epel D., Mutat Res. August 18, 2004; 552 (1-2): 101-17.


Stress-induced apoptosis in sea urchin embryogenesis., Vega RL, Epel D., Mar Environ Res. January 1, 2004; 58 (2-5): 799-802.


Sea urchin gametes in the teaching laboratory: good experiments and good experiences., Epel D, Vacquier VD, Peeler M, Miller P, Patton C., Methods Cell Biol. January 1, 2004; 74 797-823.


Protection of DNA during early development: adaptations and evolutionary consequences., Epel D., Evol Dev. January 1, 2003; 5 (1): 83-8.


NO is necessary and sufficient for egg activation at fertilization., Kuo RC, Baxter GT, Thompson SH, Stricker SA, Patton C, Bonaventura J, Epel D., Nature. August 10, 2000; 406 (6796): 633-6.


The roles of changes in NADPH and pH during fertilization and artificial activation of the sea urchin egg., Schomer Miller B, Epel D., Dev Biol. December 1, 1999; 216 (1): 394-405.


Detection of phospholipase Cgamma in sea urchin eggs., De Nadai C, Cailliau K, Epel D, Ciapa B., Dev Growth Differ. December 1, 1998; 40 (6): 669-76.


Redox changes during fertilization and maturation of marine invertebrate eggs., Schomer B, Epel D., Dev Biol. November 1, 1998; 203 (1): 1-11.


Daniel Mazia: a passion for understanding how cells reproduce., Epel D, Schatten G., Trends Cell Biol. October 1, 1998; 8 (10): 416-8.


Caged substrates for measuring enzymatic activity in vivo: photoactivated caged glucose 6-phosphate., Swezey RR, Epel D., Methods Enzymol. January 1, 1998; 291 278-88.


An early increase in cGMP follows fertilization of sea urchin eggs., Ciapa B, Epel D., Biochem Biophys Res Commun. June 25, 1996; 223 (3): 633-6.


Characterisation and role of integrins during gametic interaction and egg activation., de Nadai C, Fenichel P, Donzeau M, Epel D, Ciapa B., Zygote. February 1, 1996; 4 (1): 31-40.


Protein synthesis increases after fertilization of sea urchin eggs in the absence of an increase in intracellular pH., Rees BB, Patton C, Grainger JL, Epel D., Dev Biol. June 1, 1995; 169 (2): 683-98.


The in vivo rate of glucose-6-phosphate dehydrogenase activity in sea urchin eggs determined with a photolabile caged substrate., Swezey RR, Epel D., Dev Biol. June 1, 1995; 169 (2): 733-44.


Beakers versus breakers: how fertilisation in the laboratory differs from fertilisation in nature., Mead KS, Epel D., Zygote. May 1, 1995; 3 (2): 95-9.


Multixenobiotic Resistance in Urechis caupo Embryos: Protection From Environmental Toxins., Toomey BH, Epel D., Biol Bull. December 1, 1993; 185 (3): 355-364.


The use of caged substrates to assess the activity of 6-phosphogluconate dehydrogenase in living sea urchin eggs., Swezey RR, Epel D., Exp Cell Res. August 1, 1992; 201 (2): 366-72.


A rapid change in phosphorylation on tyrosine accompanies fertilization of sea urchin eggs., Ciapa B, Epel D., FEBS Lett. December 16, 1991; 295 (1-3): 167-70.


In vivo protein phosphorylation and labeling of ATP in sea urchin eggs loaded with 32PO4 via electroporation., Larochelle DA, Epel D., Dev Biol. November 1, 1991; 148 (1): 156-64.


The initiation of development at fertilization., Epel D., Cell Differ Dev. January 1, 1990; 29 (1): 1-12.


Stable, resealable pores formed in sea urchin eggs by electric discharge (electroporation) permit substrate loading for assay of enzymes in vivo., Swezey RR, Epel D., Cell Regul. November 1, 1989; 1 (1): 65-74.


The localization of PI and PIP kinase activities in the sea urchin egg and their modulation following fertilization., Oberdorf J, Vilar-Rojas C, Epel D., Dev Biol. January 1, 1989; 131 (1): 236-42.


Enzyme stimulation upon fertilization is revealed in electrically permeabilized sea urchin eggs., Swezey RR, Epel D., Proc Natl Acad Sci U S A. February 1, 1988; 85 (3): 812-6.


Changes in the catalytic properties of DNA ligases during early sea urchin development., Prigent C, Maniey D, Lefresne J, Epel D, Signoret J, David JC., Dev Biol. November 1, 1987; 124 (1): 281-6.


Kinetics of actin assembly attending fertilization or artificial activation of sea urchin eggs., Dufresne L, Swezey RR, Epel D., Exp Cell Res. September 1, 1987; 172 (1): 32-42.


Ultrastructural localization of intracellular calcium stores by a new cytochemical method., Poenie M, Epel D., J Histochem Cytochem. September 1, 1987; 35 (9): 939-56.


Regulation of glucose-6-phosphate dehydrogenase activity in sea urchin eggs by reversible association with cell structural elements., Swezey RR, Epel D., J Cell Biol. October 1, 1986; 103 (4): 1509-15.


The relation between intracellular pH and rate of protein synthesis in sea urchin eggs and the existence of a pH-independent event triggered by ammonia., Dubé F, Epel D., Exp Cell Res. January 1, 1986; 162 (1): 191-204.


Exocytosis of sea urchin egg cortical vesicles in vitro is retarded by hyperosmotic sucrose: kinetics of fusion monitored by quantitative light-scattering microscopy., Zimmerberg J, Sardet C, Epel D., J Cell Biol. December 1, 1985; 101 (6): 2398-410.


Involvement of zinc in the regulation of pHi, motility, and acrosome reactions in sea urchin sperm., Clapper DL, Davis JA, Lamothe PJ, Patton C, Epel D., J Cell Biol. June 1, 1985; 100 (6): 1817-24.


The hierarchy of requirements for an elevated intracellular pH during early development of sea urchin embryos., Dubé F, Schmidt T, Johnson CH, Epel D., Cell. March 1, 1985; 40 (3): 657-66.


Characterization of a Ca2+-stimulated lipid peroxidizing system in the sea urchin egg., Perry G, Epel D., Dev Biol. January 1, 1985; 107 (1): 47-57.


Fertilization stimulates lipid peroxidation in the sea urchin egg., Perry G, Epel D., Dev Biol. January 1, 1985; 107 (1): 58-65.


Cortical Granules of Sea Urchin Eggs do not Undergo Exocytosis at the Site of Sperm-egg Fusion*: (cortical granules/fertilization/sea urchin/polarity/exocytosis)., Epel D, Patton C., Dev Growth Differ. January 1, 1985; 27 (3): 361-369.


A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH., Johnson CH, Clapper DL, Winkler MM, Lee HC, Epel D., Dev Biol. August 1, 1983; 98 (2): 493-501.


Changes in intracellular acidic compartments in sea urchin eggs after activation., Lee HC, Epel D., Dev Biol. August 1, 1983; 98 (2): 446-54.


Cortical vesicle exocytosis in isolated cortices of sea urchin eggs: description of a turbidometric assay and its utilization in studying effects of different media on discharge., Sasaki H, Epel D., Dev Biol. August 1, 1983; 98 (2): 327-37.


High hydrostatic pressure and the dissection of fertilization responses. I. The relationship between cortical granule exocytosis and proton efflux during fertilization of the sea urchin egg., Schmidt T, Epel D., Exp Cell Res. July 1, 1983; 146 (2): 235-48.


Heavy metal chelators prolong motility and viability of sea urchin sperm by inhibiting spontaneous acrosome reactions., Johnson CH, Epel D., J Exp Zool. June 1, 1983; 226 (3): 431-40.


Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm., Lee HC, Johnson C, Epel D., Dev Biol. January 1, 1983; 95 (1): 31-45.


Starfish oocyte maturation and fertilization: intracellular pH is not involved in activation., Johnson CH, Epel D., Dev Biol. August 1, 1982; 92 (2): 461-9.


Is there a role for the Ca2+ influx during fertilization of the sea urchin egg?, Schmidt T, Patton C, Epel D., Dev Biol. April 1, 1982; 90 (2): 284-90.

???pagination.result.page??? 1 2 ???pagination.result.next???