Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Profile Publications (42)
ECB-PERS-4143

Publications By James A Coffman

???pagination.result.count???

???pagination.result.page??? 1


Maintenance of somatic tissue regeneration with age in short- and long-lived species of sea urchins., Bodnar AG, Coffman JA., Aging Cell. August 1, 2016; 15 (4): 778-87.            


An Elk transcription factor is required for Runx-dependent survival signaling in the sea urchin embryo., Rizzo F, Coffman JA, Arnone MI., Dev Biol. August 1, 2016; 416 (1): 173-186.


Gene Expression Changes Associated With the Developmental Plasticity of Sea Urchin Larvae in Response to Food Availability., Carrier TJ, King BL, Coffman JA., Biol Bull. June 1, 2015; 228 (3): 171-80.


Oral-aboral axis specification in the sea urchin embryo, IV: hypoxia radializes embryos by preventing the initial spatialization of nodal activity., Coffman JA, Wessels A, DeSchiffart C, Rydlizky K., Dev Biol. February 15, 2014; 386 (2): 302-7.


Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus., McCarty CM, Coffman JA., Biochem Biophys Res Commun. October 25, 2013; 440 (3): 413-8.


Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division., Robertson AJ, Coluccio A, Jensen S, Rydlizky K, Coffman JA., Biol Open. March 25, 2013; 2 (5): 472-8.          


Nodal-mediated epigenesis requires dynamin-mediated endocytosis., Ertl RP, Robertson AJ, Saunders D, Coffman JA., Dev Dyn. March 1, 2011; 240 (3): 704-11.


Oxygen, pH, and oral-aboral axis specification in the sea urchin embryo., Coluccio AE, LaCasse TJ, Coffman JA., Mol Reprod Dev. February 1, 2011; 78 (2): 68.


Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2., Coffman JA, Coluccio A, Planchart A, Robertson AJ., Dev Biol. June 1, 2009; 330 (1): 123-30.


Is Runx a linchpin for developmental signaling in metazoans?, Coffman JA., J Cell Biochem. May 15, 2009; 107 (2): 194-202.


Mitochondria and metazoan epigenesis., Coffman JA., Semin Cell Dev Biol. May 1, 2009; 20 (3): 321-9.


Runx expression is mitogenic and mutually linked to Wnt activity in blastula-stage sea urchin embryos., Robertson AJ, Coluccio A, Knowlton P, Dickey-Sims C, Coffman JA., PLoS One. January 1, 2008; 3 (11): e3770.            


Mitochondria, redox signaling and axis specification in metazoan embryos., Coffman JA, Denegre JM., Dev Biol. August 15, 2007; 308 (2): 266-80.


Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network., Nam J, Su YH, Lee PY, Robertson AJ, Coffman JA, Davidson EH., Dev Biol. June 15, 2007; 306 (2): 860-9.


The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus., Robertson AJ, Croce J, Carbonneau S, Voronina E, Miranda E, McClay DR, Coffman JA., Dev Biol. December 1, 2006; 300 (1): 321-34.


The sea urchin kinome: a first look., Bradham CA, Foltz KR, Beane WS, Arnone MI, Rizzo F, Coffman JA, Mushegian A, Goel M, Morales J, Geneviere AM, Lapraz F, Robertson AJ, Kelkar H, Loza-Coll M, Townley IK, Raisch M, Roux MM, Lepage T, Gache C, McClay DR, Manning G., Dev Biol. December 1, 2006; 300 (1): 180-93.


The genomic repertoire for cell cycle control and DNA metabolism in S. purpuratus., Fernandez-Guerra A, Aze A, Morales J, Mulner-Lorillon O, Cosson B, Cormier P, Bradham C, Adams N, Robertson AJ, Marzluff WF, Coffman JA, Genevière AM., Dev Biol. December 1, 2006; 300 (1): 238-51.


Protein tyrosine and serine-threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: identification and potential functions., Byrum CA, Walton KD, Robertson AJ, Carbonneau S, Thomason RT, Coffman JA, McClay DR., Dev Biol. December 1, 2006; 300 (1): 194-218.


The genome of the sea urchin Strongylocentrotus purpuratus., Sea Urchin Genome Sequencing Consortium, Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Bellé R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Genevière AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron KF, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallböök F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su YH, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Röttinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu SY, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu LL, Thorn R, Wright R., Science. November 10, 2006; 314 (5801): 941-52.


CBFbeta is a facultative Runx partner in the sea urchin embryo., Robertson AJ, Dickey-Sims C, Ransick A, Rupp DE, McCarthy JJ, Coffman JA., BMC Biol. February 9, 2006; 4 4.            


Runx-dependent expression of PKC is critical for cell survival in the sea urchin embryo., Dickey-Sims C, Robertson AJ, Rupp DE, McCarthy JJ, Coffman JA., BMC Biol. August 2, 2005; 3 18.        


Sea urchin vault structure, composition, and differential localization during development., Stewart PL, Makabi M, Lang J, Dickey-Sims C, Robertson AJ, Coffman JA, Suprenant KA., BMC Dev Biol. February 14, 2005; 5 3.            


Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus., Coffman JA, McCarthy JJ, Dickey-Sims C, Robertson AJ., Dev Biol. September 1, 2004; 273 (1): 160-71.


Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene., Coffman JA, Dickey-Sims C, Haug JS, McCarthy JJ, Robertson AJ., BMC Biol. May 7, 2004; 2 6.      


The sea urchin stem-loop-binding protein: a maternally expressed protein that probably functions in expression of multiple classes of histone mRNA., Robertson AJ, Howard JT, Dominski Z, Schnackenberg BJ, Sumerel JL, McCarthy JJ, Coffman JA, Marzluff WF., Nucleic Acids Res. February 3, 2004; 32 (2): 811-8.


Identification of sequence-specific DNA binding proteins., Coffman JA, Yuh CH., Methods Cell Biol. January 1, 2004; 74 653-75.


The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms., Rennert J, Coffman JA, Mushegian AR, Robertson AJ., BMC Evol Biol. March 24, 2003; 3 4.        


Runx transcription factors and the developmental balance between cell proliferation and differentiation., Coffman JA., Cell Biol Int. January 1, 2003; 27 (4): 315-24.


The expression of SpRunt during sea urchin embryogenesis., Robertson AJ, Dickey CE, McCarthy JJ, Coffman JA., Mech Dev. September 1, 2002; 117 (1-2): 327-30.


Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry., Coffman JA, Davidson EH., Dev Biol. February 1, 2001; 230 (1): 18-28.


Large-scale culture and preparation of sea urchin embryos for isolation of transcriptional regulatory proteins., Coffman JA, Leahy PS., Methods Mol Biol. January 1, 2000; 135 17-23.


SpMyb functions as an intramodular repressor to regulate spatial expression of CyIIIa in sea urchin embryos., Coffman JA, Kirchhamer CV, Harrington MG, Davidson EH., Development. December 1, 1997; 124 (23): 4717-27.


Covalent variation is a general property of transcription factors in the sea urchin embryo., Harrington MG, Coffman JA, Davidson EH., Mol Mar Biol Biotechnol. September 1, 1997; 6 (3): 153-62.


Extensive maternal representation of DNA-binding proteins that interact with regulatory target sites of the Strongylocentrotus purpuratus CyIIIa gene., Calzone FJ, Grainger J, Coffman JA, Davidson EH., Mol Mar Biol Biotechnol. June 1, 1997; 6 (2): 79-83.


SpRunt-1, a new member of the runt domain family of transcription factors, is a positive regulator of the aboral ectoderm-specific CyIIIA gene in sea urchin embryos., Coffman JA, Kirchhamer CV, Harrington MG, Davidson EH., Dev Biol. February 25, 1996; 174 (1): 43-54.


SpGCF1, a sea urchin embryo DNA-binding protein, exists as five nested variants encoded by a single mRNA., Zeller RW, Coffman JA, Harrington MG, Britten RJ, Davidson EH., Dev Biol. June 1, 1995; 169 (2): 713-27.


SpOct, a gene encoding the major octamer-binding protein in sea urchin embryos: expression profile, evolutionary relationships, and DNA binding of expressed protein., Char BR, Bell JR, Dovala J, Coffman JA, Harrington MG, Becerra JC, Davidson EH, Calzone FJ, Maxson R., Dev Biol. August 1, 1993; 158 (2): 350-63.


Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2., Hardin J, Coffman JA, Black SD, McClay DR., Development. November 1, 1992; 116 (3): 671-85.


Complexity of sea urchin embryo nuclear proteins that contain basic domains., Harrington MG, Coffman JA, Calzone FJ, Hood LE, Britten RJ, Davidson EH., Proc Natl Acad Sci U S A. July 15, 1992; 89 (14): 6252-6.


Automated sequential affinity chromatography of sea urchin embryo DNA binding proteins., Coffman JA, Moore JG, Calzone FJ, Britten RJ, Hood LE, Davidson EH., Mol Mar Biol Biotechnol. April 1, 1992; 1 (2): 136-46.


Expression of spatially regulated genes in the sea urchin embryo., Coffman JA, Davidson EH., Curr Opin Genet Dev. April 1, 1992; 2 (2): 260-8.


A hyaline layer protein that becomes localized to the oral ectoderm and foregut of sea urchin embryos., Coffman JA, McClay DR., Dev Biol. July 1, 1990; 140 (1): 93-104.

???pagination.result.page??? 1