Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Profile Publications (16)
ECB-PERS-4120

Publications By Lia Addadi

???pagination.result.count???

???pagination.result.page??? 1


Elemental compositions of sea urchin larval cell vesicles evaluated by cryo-STEM-EDS and cryo-SEM-EDS., Kahil K, Kaplan-Ashiri I, Wolf SG, Rechav K, Weiner S, Addadi L., Acta Biomater. January 1, 2023; 155 482-490.


Ion Pathways in Biomineralization: Perspectives on Uptake, Transport, and Deposition of Calcium, Carbonate, and Phosphate., Kahil K, Weiner S, Addadi L, Gal A., J Am Chem Soc. December 22, 2021; 143 (50): 21100-21112.        


Cellular pathways of calcium transport and concentration toward mineral formation in sea urchin larvae., Kahil K, Varsano N, Sorrentino A, Pereiro E, Rez P, Weiner S, Addadi L., Proc Natl Acad Sci U S A. December 8, 2020; 117 (49): 30957-30965.


Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state., Vidavsky N, Akiva A, Kaplan-Ashiri I, Rechav K, Addadi L, Weiner S, Schertel A., J Struct Biol. December 1, 2016; 196 (3): 487-495.


Calcium transport into the cells of the sea urchin larva in relation to spicule formation., Vidavsky N, Addadi S, Schertel A, Ben-Ezra D, Shpigel M, Addadi L, Weiner S., Proc Natl Acad Sci U S A. November 8, 2016; 113 (45): 12637-12642.


Mineral-bearing vesicle transport in sea urchin embryos., Vidavsky N, Masic A, Schertel A, Weiner S, Addadi L., J Struct Biol. December 1, 2015; 192 (3): 358-365.


Initial stages of calcium uptake and mineral deposition in sea urchin embryos., Vidavsky N, Addadi S, Mahamid J, Shimoni E, Ben-Ezra D, Shpigel M, Weiner S, Addadi L., Proc Natl Acad Sci U S A. January 7, 2014; 111 (1): 39-44.


The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution., Ma Y, Aichmayer B, Paris O, Fratzl P, Meibom A, Metzler RA, Politi Y, Addadi L, Gilbert PU, Weiner S., Proc Natl Acad Sci U S A. April 14, 2009; 106 (15): 6048-53.


Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule., Politi Y, Metzler RA, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert PU, Gilbert P., Proc Natl Acad Sci U S A. November 11, 2008; 105 (45): 17362-6.


Structural biology. Choosing the crystallization path less traveled., Weiner S, Sagi I, Addadi L., Science. August 12, 2005; 309 (5737): 1027-8.


Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase., Politi Y, Arad T, Klein E, Weiner S, Addadi L., Science. November 12, 2004; 306 (5699): 1161-4.


Calcitic microlenses as part of the photoreceptor system in brittlestars., Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G., Nature. August 23, 2001; 412 (6849): 819-22.


Cellular control over spicule formation in sea urchin embryos: A structural approach., Beniash E, Addadi L, Weiner S., J Struct Biol. March 1, 1999; 125 (1): 50-62.


Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function., Wang RZ, Addadi L, Weiner S., Philos Trans R Soc Lond B Biol Sci. April 29, 1997; 352 (1352): 469-80.


Biological control of crystal texture: a widespread strategy for adapting crystal properties to function., Berman A, Hanson J, Leiserowitz L, Koetzle TF, Weiner S, Addadi L., Science. February 5, 1993; 259 (5096): 776-9.


Intercalation of sea urchin proteins in calcite: study of a crystalline composite material., Berman A, Addadi L, Kvick A, Leiserowitz L, Nelson M, Weiner S., Science. November 2, 1990; 250 (4981): 664-7.

???pagination.result.page??? 1