Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (16)

Publications By Marian Y Hu

Results 1 - 16 of 16 results

Page(s): 1

Surviving in an Acidifying Ocean: Acid-Base Physiology and Energetics of the Sea Urchin Larva., Hu MY, Stumpp M., Physiology (Bethesda). September 1, 2023; 38 (5): 0.

Characterization of digestive proteases in the gut of a basal deuterostome., Hildebrand J, Chang WW, Hu MY, Stumpp M., J Exp Biol. August 1, 2023; 226 (15):

Soluble adenylyl cyclase coordinates intracellular pH homeostasis and biomineralization in calcifying cells of a marine animal., Chang WW, Thies AB, Tresguerres M, Hu MY., Am J Physiol Cell Physiol. March 1, 2023; 324 (3): C777-C786.

Extracellular carbonic anhydrase activity promotes a carbon concentration mechanism in metazoan calcifying cells., Matt AS, Chang WW, Hu MY., Proc Natl Acad Sci U S A. October 4, 2022; 119 (40): e2203904119.

An otopetrin family proton channel promotes cellular acid efflux critical for biomineralization in a marine calcifier., Chang WW, Matt AS, Schewe M, Musinszki M, Grüssel S, Brandenburg J, Garfield D, Bleich M, Baukrowitz T, Hu MY., Proc Natl Acad Sci U S A. July 27, 2021; 118 (30):

Na+/H+-exchangers differentially contribute to midgut fluid sodium and proton concentration in the sea urchin larva., Petersen I, Chang WWJ, Hu MY., J Exp Biol. April 1, 2021; 224 (7):

Na+/H+ exchangers differentially contribute to midgut fluid sodium and proton concentration in the sea urchin larva., Petersen I, Chang WWJ, Hu MY., J Exp Biol. April 1, 2021; 224 (7):

Cellular bicarbonate accumulation and vesicular proton transport promote calcification in the sea urchin larva., Hu MY, Petersen I, Chang WW, Blurton C, Stumpp M., Proc Biol Sci. September 9, 2020; 287 (1934): 20201506.

Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO2 -induced seawater acidification., Lee HG, Stumpp M, Yan JJ, Tseng YC, Heinzel S, Hu MY., Comp Biochem Physiol A Mol Integr Physiol. August 1, 2019; 234 87-97.

Measurement of feeding rates, respiration, and pH regulatory processes in the light of ocean acidification research., Stumpp M, Dupont S, Hu MY., Methods Cell Biol. January 1, 2019; 150 391-409.

Trans-life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens., Hu MY, Lein E, Bleich M, Melzner F, Stumpp M., Acta Physiol (Oxf). October 1, 2018; 224 (2): e13075.

A SLC4 family bicarbonate transporter is critical for intracellular pH regulation and biomineralization in sea urchin embryos., Hu MY, Yan JJ, Petersen I, Himmerkus N, Bleich M, Stumpp M., Elife. May 1, 2018; 7                         

Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes., Stumpp M, Hu MY, Tseng YC, Guh YJ, Chen YC, Yu JK, Su YH, Hwang PP., Sci Rep. June 8, 2015; 5 10421.      

Energy metabolism and regeneration are impaired by seawater acidification in the infaunal brittlestar Amphiura filiformis., Hu MY, Casties I, Stumpp M, Ortega-Martinez O, Dupont S., J Exp Biol. July 1, 2014; 217 (Pt 13): 2411-21.

Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification., Stumpp M, Hu MY, Melzner F, Gutowska MA, Dorey N, Himmerkus N, Holtmann WC, Dupont ST, Thorndyke MC, Bleich M., Proc Natl Acad Sci U S A. October 30, 2012; 109 (44): 18192-7.

Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification., Stumpp M, Trübenbach K, Brennecke D, Hu MY, Melzner F., Aquat Toxicol. April 1, 2012; 110-111 194-207.

Page(s): 1