Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Profile Publications (32)
ECB-PERS-4091

Publications By Athula Wikramanayake

???pagination.result.count???

???pagination.result.page??? 1


Polarized Dishevelled dissolution and reassembly drives embryonic axis specification in sea star oocytes., Swartz SZ, Tan TH, Perillo M, Fakhri N, Wessel GM, Wikramanayake AH, Cheeseman IM., Curr Biol. December 20, 2021; 31 (24): 5633-5641.e4.


Gel-like carbon dots: A high-performance future photocatalyst., Zhou Y, ElMetwally AE, Chen J, Shi W, Cilingir EK, Walters B, Mintz KJ, Martin C, Ferreira BCLB, Zhang W, Hettiarachchi SD, Serafim LF, Blackwelder PL, Wikramanayake AH, Peng Z, Leblanc RM., J Colloid Interface Sci. October 1, 2021; 599 519-532.


The nanoscale organization of the Wnt signaling integrator Dishevelled in the vegetal cortex domain of an egg and early embryo., Henson JH, Samasa B, Shuster CB, Wikramanayake AH., PLoS One. May 26, 2021; 16 (5): e0248197.            


An early global role for Axin is required for correct patterning of the anterior-posterior axis in the sea urchin embryo., Sun H, Peng CJ, Wang L, Feng H, Wikramanayake AH., Development. March 31, 2021; 148 (7):                   


Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways., Oulhen N, Swartz SZ, Wang L, Wikramanayake A, Wessel GM., Dev Biol. August 1, 2019; 452 (1): 34-42.


Visualizing egg and embryonic polarity., Smith LT, Wikramanayake AH., Methods Cell Biol. January 1, 2019; 150 251-268.


Inhibition of microRNA suppression of Dishevelled results in Wnt pathway-associated developmental defects in sea urchin., Sampilo NF, Stepicheva NA, Zaidi SAM, Wang L, Wu W, Wikramanayake A, Song JL., Development. November 30, 2018; 145 (23):


A resorcinarene for inhibition of Aβ fibrillation., Han X, Park J, Wu W, Malagon A, Wang L, Vargas E, Wikramanayake A, Houk KN, Leblanc RM., Chem Sci. March 1, 2017; 8 (3): 2003-2009.          


Nuclearization of β-catenin in ectodermal precursors confers organizer-like ability to induce endomesoderm and pattern a pluteus larva., Byrum CA, Wikramanayake AH., Evodevo. November 4, 2013; 4 (1): 31.        


Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling., Peng CJ, Wikramanayake AH., PLoS One. January 1, 2013; 8 (11): e80693.          


Blocking Dishevelled signaling in the noncanonical Wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation., Byrum CA, Xu R, Bince JM, McClay DR, Wikramanayake AH., Dev Dyn. July 1, 2009; 238 (7): 1649-65.


Wnt signaling in the early sea urchin embryo., Kumburegama S, Wikramanayake AH., Methods Mol Biol. January 1, 2008; 469 187-99.


Detecting expression patterns of Wnt pathway components in sea urchin embryos., Bince JM, Peng CF, Wikramanayake AH., Methods Mol Biol. January 1, 2008; 469 201-11.


Functional analysis of Wnt signaling in the early sea urchin embryo using mRNA microinjection., Bince JM, Wikramanayake AH., Methods Mol Biol. January 1, 2008; 469 213-22.


A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus., Croce JC, Wu SY, Byrum C, Xu R, Duloquin L, Wikramanayake AH, Gache C, McClay DR., Dev Biol. December 1, 2006; 300 (1): 121-31.


cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network., Minokawa T, Wikramanayake AH, Davidson EH., Dev Biol. December 15, 2005; 288 (2): 545-58.


Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages., Wikramanayake AH, Peterson R, Chen J, Huang L, Bince JM, McClay DR, Klein WH., Genesis. July 1, 2004; 39 (3): 194-205.


Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled., Weitzel HE, Illies MR, Byrum CA, Xu R, Wikramanayake AH, Ettensohn CA., Development. June 1, 2004; 131 (12): 2947-56.


Blastomere isolation and transplantation., Sweet H, Amemiya S, Ransick A, Minokawa T, McClay DR, Wikramanayake A, Kuraishi R, Kiyomoto M, Nishida H, Henry J., Methods Cell Biol. January 1, 2004; 74 243-71.


Polycyclic aromatic hydrocarbons disrupt axial development in sea urchin embryos through a beta-catenin dependent pathway., Pillai MC, Vines CA, Wikramanayake AH, Cherr GN., Toxicology. April 15, 2003; 186 (1-2): 93-108.


Cyclin D and cdk4 are required for normal development beyond the blastula stage in sea urchin embryos., Moore JC, Sumerel JL, Schnackenberg BJ, Nichols JA, Wikramanayake A, Wessel GM, Marzluff WF., Mol Cell Biol. July 1, 2002; 22 (13): 4863-75.


Involvement of Tcf/Lef in establishing cell types along the animal-vegetal axis of sea urchins., Huang L, Li X, El-Hodiri HM, Dayal S, Wikramanayake AH, Klein WH., Dev Genes Evol. February 1, 2000; 210 (2): 73-81.


Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling., Li X, Wikramanayake AH, Klein WH., Dev Biol. August 15, 1999; 212 (2): 425-39.


How to grow a gut: ontogeny of the endoderm in the sea urchin embryo., Wessel GM, Wikramanayake A., Bioessays. June 1, 1999; 21 (6): 459-71.


beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo., Wikramanayake AH, Huang L, Klein WH., Proc Natl Acad Sci U S A. August 4, 1998; 95 (16): 9343-8.


Disruption of gastrulation and oral-aboral ectoderm differentiation in the Lytechinus pictus embryo by a dominant/negative PDGF receptor., Ramachandran RK, Wikramanayake AH, Uzman JA, Govindarajan V, Tomlinson CR., Development. June 1, 1997; 124 (12): 2355-64.


Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo., Wikramanayake AH, Klein WH., Development. January 1, 1997; 124 (1): 13-20.


Very early and transient vegetal-plate expression of SpKrox1, a Krüppel/Krox gene from Stronglyocentrotus purpuratus., Wang W, Wikramanayake AH, Gonzalez-Rimbau M, Vlahou A, Flytzanis CN, Klein WH., Mech Dev. December 1, 1996; 60 (2): 185-95.


Altering cell fates in sea urchin embryos by overexpressing SpOtx, an orthodenticle-related protein., Mao CA, Wikramanayake AH, Gan L, Chuang CK, Summers RG, Klein WH., Development. May 1, 1996; 122 (5): 1489-98.


Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction., Chuang CK, Wikramanayake AH, Mao CA, Li X, Klein WH., Dev Genet. January 1, 1996; 19 (3): 231-7.


Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species., Wikramanayake AH, Brandhorst BP, Klein WH., Development. May 1, 1995; 121 (5): 1497-505.


An orthodenticle-related protein from Strongylocentrotus purpuratus., Gan L, Mao CA, Wikramanayake A, Angerer LM, Angerer RC, Klein WH., Dev Biol. February 1, 1995; 167 (2): 517-28.

???pagination.result.page??? 1