Results 1 - 50 of 131 results
Single-Cell Transcriptomics Reveals Evolutionary Reconfiguration of Embryonic Cell Fate Specification in the Sea Urchin Heliocidaris erythrogramma. , Massri AJ, Berrio A, Afanassiev A, Greenstreet L, Pipho K, Byrne M , Schiebinger G, McClay DR , Wray GA ., Genome Biol Evol. January 6, 2025; 17 (1):
Reprogramming of cells during embryonic transfating: overcoming a reprogramming block. , Berrio A, Miranda E, Massri AJ, Afanassiev A, Schiebinger G, Wray GA , McClay DR ., Development. December 4, 2024;
An RNA interference approach for functional studies in the sea urchin and its use in analysis of nodal signaling gradients. , Wilson K , Manner C, Miranda E, Berrio A, Wray GA , McClay DR ., Dev Biol. December 3, 2024; 516 59-70.
A molecular basis for spine color morphs in the sea urchin Lytechinus variegatus. , Wise M, Silvia M, Reyes G, Dunn R, Onorato TM, Pieplow C, Furze A, Hebert E, Oulhen N , Ritschoff D, McClay DR , Wessel G ., Sci Rep. November 18, 2024; 14 (1): 28518.
Feedback circuits are numerous in embryonic gene regulatory networks and offer a stabilizing influence on evolution of those networks. , Massri AJ, McDonald B, Wray GA , McClay DR ., Evodevo. June 16, 2023; 14 (1): 10.
Wound repair in sea urchin larvae involves pigment cells and blastocoelar cells. , Allen RL, George AN, Miranda E, Phillips TM, Crawford JM, Kiehart DP, McClay DR ., Dev Biol. November 1, 2022; 491 56-65.
Development of a larval nervous system in the sea urchin. , McClay DR ., Curr Top Dev Biol. January 1, 2022; 146 25-48.
Reprint of: Conditional specification of endomesoderm. , McClay DR , Croce JC , Warner JF., Cells Dev. December 1, 2021; 168 203731.
Developmental single-cell transcriptomics in the Lytechinus variegatus sea urchin embryo. , Massri AJ, Greenstreet L, Afanassiev A, Berrio A, Wray GA , Schiebinger G, McClay DR ., Development. October 1, 2021; 148 (19):
Conditional specification of endomesoderm. , McClay DR , Croce JC , Warner JF., Cells Dev. September 1, 2021; 167 203716.
Methodologies for Following EMT In Vivo at Single Cell Resolution. , Massri AJ, Schiebinger GR, Berrio A, Wang L, Wray GA , McClay DR ., Methods Mol Biol. January 1, 2021; 2179 303-314.
Perspective on Epithelial-Mesenchymal Transitions in Embryos. , McClay DR ., Methods Mol Biol. January 1, 2021; 2179 7-12.
Chromosomal-Level Genome Assembly of the Sea Urchin Lytechinus variegatus Substantially Improves Functional Genomic Analyses. , Davidson PL, Guo H, Wang L, Berrio A, Zhang H, Chang Y , Soborowski AL, McClay DR , Fan G, Wray GA ., Genome Biol Evol. July 1, 2020; 12 (7): 1080-1086.
Developmental origin of peripheral ciliary band neurons in the sea urchin embryo. , Slota LA, Miranda E, Peskin B, McClay DR ., Dev Biol. March 15, 2020; 459 (2): 72-78.
Gastrulation in the sea urchin. , McClay DR , Warner J, Martik M, Miranda E, Slota L., Curr Top Dev Biol. January 1, 2020; 136 195-218.
Methods for transplantation of sea urchin blastomeres. , George AN, McClay DR ., Methods Cell Biol. January 1, 2019; 150 223-233.
Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin Lytechinus variegatus. , Slota LA, Miranda EM, McClay DR ., Evodevo. January 1, 2019; 10 2.
Unlocking mechanisms of development through advances in tools. , McClay D ., Methods Cell Biol. January 1, 2019; 151 37-41.
Neurogenesis in the sea urchin embryo is initiated uniquely in three domains. , McClay DR , Miranda E, Feinberg SL., Development. November 9, 2018; 145 (21):
Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo. , Slota LA, McClay DR ., Dev Biol. January 15, 2018; 435 (2): 138-149.
New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus. , Martik ML, McClay DR ., Mech Dev. December 1, 2017; 148 3-10.
Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin. , Warner JF, Miranda EL, McClay DR ., Dev Biol. March 15, 2016; 411 (2): 314-324.
Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris. , Israel JW, Martik ML, Byrne M , Raff EC, Raff RA, McClay DR , Wray GA ., PLoS Biol. March 1, 2016; 14 (3): e1002391.
Developmental gene regulatory networks in sea urchins and what we can learn from them. , Martik ML, Lyons DC , McClay DR ., F1000Res. February 22, 2016; 5
Sea Urchin Morphogenesis. , McClay DR ., Curr Top Dev Biol. January 1, 2016; 117 15-29.
Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo. , Martik ML, McClay DR ., Elife. September 24, 2015; 4
Specification to biomineralization: following a single cell type as it constructs a skeleton. , Lyons DC , Martik ML, Saunders LR, McClay DR ., Integr Comp Biol. October 1, 2014; 54 (4): 723-33.
Delayed transition to new cell fates during cellular reprogramming. , Cheng X, Lyons DC , Socolar JE, McClay DR ., Dev Biol. July 15, 2014; 391 (2): 147-57.
Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition. , Saunders LR, McClay DR ., Development. April 1, 2014; 141 (7): 1503-13.
Branching out: origins of the sea urchin larval skeleton in development and evolution. , McIntyre DC, Lyons DC , Martik M, McClay DR ., Genesis. March 1, 2014; 52 (3): 173-85.
Hedgehog signaling requires motile cilia in the sea urchin. , Warner JF, McCarthy AM, Morris RL , McClay DR ., Mol Biol Evol. January 1, 2014; 31 (1): 18-22.
Perturbations to the hedgehog pathway in sea urchin embryos. , Warner JF, McClay DR ., Methods Mol Biol. January 1, 2014; 1128 211-21.
Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm. , McIntyre DC, Seay NW, Croce JC , McClay DR ., Development. December 1, 2013; 140 (24): 4881-9.
Frizzled1/2/7 signaling directs β- catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis. , Lhomond G, McClay DR , Gache C, Croce JC ., Development. February 1, 2012; 139 (4): 816-25.
Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult. , Warner JF, Lyons DC , McClay DR ., PLoS Biol. January 1, 2012; 10 (10): e1001404.
Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states. , Lyons DC , Kaltenbach SL, McClay DR ., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (2): 231-52.
Wnt6 activates endoderm in the sea urchin gene regulatory network. , Croce J , Range R , Wu SY, Miranda E, Lhomond G, Peng JC, Lepage T , McClay DR ., Development. August 1, 2011; 138 (15): 3297-306.
Evolutionary crossroads in developmental biology: sea urchins. , McClay DR ., Development. July 1, 2011; 138 (13): 2639-48.
The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network. , Rho HK, McClay DR ., Development. March 1, 2011; 138 (5): 937-45.
Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. , Croce JC , McClay DR ., Development. January 1, 2010; 137 (1): 83-91.
Hedgehog signaling patterns mesoderm in the sea urchin. , Walton KD, Warner J, Hertzler PH, McClay DR ., Dev Biol. July 1, 2009; 331 (1): 26-37.
Blocking Dishevelled signaling in the noncanonical Wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation. , Byrum CA , Xu R, Bince JM, McClay DR , Wikramanayake AH ., Dev Dyn. July 1, 2009; 238 (7): 1649-65.
Chordin is required for neural but not axial development in sea urchin embryos. , Bradham CA , Oikonomou C, Kühn A, Core AB, Modell JW, McClay DR , Poustka AJ., Dev Biol. April 15, 2009; 328 (2): 221-33.
LvNumb works synergistically with Notch signaling to specify non-skeletal mesoderm cells in the sea urchin embryo. , Range RC , Glenn TD, Miranda E, McClay DR ., Development. August 1, 2008; 135 (14): 2445-54.
Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. , Wu SY, Yang YP, McClay DR ., Dev Biol. July 15, 2008; 319 (2): 406-15.
Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development. , Voronina E, Lopez M, Juliano CE , Gustafson E, Song JL , Extavour C, George S, Oliveri P , McClay D , Wessel G ., Dev Biol. February 15, 2008; 314 (2): 276-86.
FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. , Röttinger E, Saudemont A, Duboc V, Besnardeau L, McClay D , Lepage T ., Development. January 1, 2008; 135 (2): 353-65.
Ingression of primary mesenchyme cells of the sea urchin embryo: a precisely timed epithelial mesenchymal transition. , Wu SY, Ferkowicz M, McClay DR ., Birth Defects Res C Embryo Today. December 1, 2007; 81 (4): 241-52.
The Snail repressor is required for PMC ingression in the sea urchin embryo. , Wu SY, McClay DR ., Development. March 1, 2007; 134 (6): 1061-70.
The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus. , Robertson AJ, Croce J , Carbonneau S, Voronina E, Miranda E, McClay DR , Coffman JA ., Dev Biol. December 1, 2006; 300 (1): 321-34.