Results 1 - 26 of 26 results
An easy and rapid staining method for confocal microscopic observation and reconstruction of three-dimensional images of echinoderm larvae and juveniles. , Tokanai K, Kamei Y, Minokawa T ., Dev Growth Differ. December 1, 2021; 63 (9): 478-487.
pmar1/ phb homeobox genes and the evolution of the double-negative gate for endomesoderm specification in echinoderms. , Yamazaki A, Morino Y, Urata M, Yamaguchi M, Minokawa T , Furukawa R, Kondo M , Wada H., Development. February 26, 2020; 147 (4):
Cidaroids, clypeasteroids, and spatangoids: Procurement, culture, and basic methods. , Hibino T, Minokawa T , Yamazaki A., Methods Cell Biol. January 1, 2019; 150 81-103.
Anteroposterior molecular registries in ectoderm of the echinus rudiment. , Adachi S, Niimi I, Sakai Y, Sato F, Minokawa T , Urata M, Sehara-Fujisawa A, Kobayashi I, Yamaguchi M., Dev Dyn. December 1, 2018; 247 (12): 1297-1307.
Comparative studies on the skeletogenic mesenchyme of echinoids. , Minokawa T ., Dev Biol. July 15, 2017; 427 (2): 212-218.
Roles of hesC and gcm in echinoid larval mesenchyme cell development. , Yamazaki A, Minokawa T ., Dev Growth Differ. April 1, 2016; 58 (3): 315-26.
Expession patterns of mesenchyme specification genes in two distantly related echinoids, Glyptocidaris crenularis and Echinocardium cordatum. , Yamazaki A, Minokawa T ., Gene Expr Patterns. March 1, 2015; 17 (2): 87-97.
Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords. , Kaul-Strehlow S, Urata M, Minokawa T , Stach T, Wanninger A., Org Divers Evol. January 1, 2015; 15 (2): 405-422.
Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate. , Yamazaki A, Kidachi Y, Yamaguchi M, Minokawa T ., Development. July 1, 2014; 141 (13): 2669-79.
"Micromere" formation and expression of endomesoderm regulatory genes during embryogenesis of the primitive echinoid Prionocidaris baculosa. , Yamazaki A, Kidachi Y, Minokawa T ., Dev Growth Differ. June 1, 2012; 54 (5): 566-78.
Evolutionary modification of T-brain ( tbr) expression patterns in sand dollar. , Minemura K, Yamaguchi M, Minokawa T ., Gene Expr Patterns. October 1, 2009; 9 (7): 468-74.
Role of the nanos homolog during sea urchin development. , Fujii T, Sakamoto N , Ochiai H, Fujita K, Okamitsu Y, Sumiyoshi N, Minokawa T , Yamamoto T ., Dev Dyn. October 1, 2009; 238 (10): 2511-21.
Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres. , Iijima M, Ishizuka Y, Nakajima Y, Amemiya S , Minokawa T ., Dev Genes Evol. May 1, 2009; 219 (5): 235-47.
Expression patterns of wnt8 orthologs in two sand dollar species with different developmental modes. , Nakata H, Minokawa T ., Gene Expr Patterns. March 1, 2009; 9 (3): 152-7.
cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network. , Minokawa T , Wikramanayake AH , Davidson EH ., Dev Biol. December 15, 2005; 288 (2): 545-58.
Molecular heterotopy in the expression of Brachyury orthologs in order Clypeasteroida (irregular sea urchins) and order Echinoida (regular sea urchins). , Hibino T, Harada Y, Minokawa T , Nonaka M, Amemiya S ., Dev Genes Evol. November 1, 2004; 214 (11): 546-58.
R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres. , Revilla-i-Domingo R, Minokawa T , Davidson EH ., Dev Biol. October 15, 2004; 274 (2): 438-51.
SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis. , Otim O, Amore G, Minokawa T , McClay DR , Davidson EH ., Dev Biol. September 15, 2004; 273 (2): 226-43.
Expression patterns of four different regulatory genes that function during sea urchin development. , Minokawa T , Rast JP, Arenas-Mena C , Franco CB, Davidson EH ., Gene Expr Patterns. July 1, 2004; 4 (4): 449-56.
Blastomere isolation and transplantation. , Sweet H , Amemiya S , Ransick A, Minokawa T , McClay DR , Wikramanayake A , Kuraishi R, Kiyomoto M , Nishida H, Henry J., Methods Cell Biol. January 1, 2004; 74 243-71.
New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization. , Ransick A, Rast JP, Minokawa T , Calestani C , Davidson EH ., Dev Biol. June 1, 2002; 246 (1): 132-47.
A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. , Davidson EH , Rast JP, Oliveri P , Ransick A, Calestani C , Yuh CH, Minokawa T , Amore G, Hinman V , Arenas-Mena C , Otim O, Brown CT, Livi CB, Lee PY , Revilla R, Schilstra MJ, Clarke PJ, Rust AG, Pan Z, Arnone MI , Rowen L, Cameron RA , McClay DR , Hood L, Bolouri H., Dev Biol. June 1, 2002; 246 (1): 162-90.
A genomic regulatory network for development. , Davidson EH , Rast JP, Oliveri P , Ransick A, Calestani C , Yuh CH, Minokawa T , Amore G, Hinman V , Arenas-Mena C , Otim O, Brown CT, Livi CB, Lee PY , Revilla R, Rust AG, Pan Zj, Schilstra MJ, Clarke PJ, Arnone MI , Rowen L, Cameron RA , McClay DR , Hood L, Bolouri H., Science. March 1, 2002; 295 (5560): 1669-78.
Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos. , Ishizuka Y, Minokawa T , Amemiya S ., Dev Genes Evol. February 1, 2001; 211 (2): 83-8.
Studies on the potential of micromeres to induce archenteron differentiation in embryos of a direct-developing sand dollar, Peronella japonica. , Iijima M, Ishizuka Y, Minokawa T , Amemiya S ., Zygote. January 1, 2000; 8 Suppl 1 S80.
Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants. , Minokawa T , Amemiya S ., Dev Growth Differ. October 1, 1999; 41 (5): 535-47.