Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Profile Publications(96)
ECB-PERS-4176

Publications By David Epel

Results 51 - 96 of 96 results

Page(s): Prev 1 2


Intracellular calcium and fertilization: role of the cation and regulation of intracellular calcium levels., Epel D, Perry G, Schmidt T., Prog Clin Biol Res. January 1, 1982; 91 171-83.


The appearance of an extracellular arylsulfatase during morphogenesis of the sea urchin Strongylocentrotus purpuratus., Rapraeger AC, Epel D., Dev Biol. December 1, 1981; 88 (2): 269-78.


Reevaluation of cell surface protein release at fertilization and its role in regulation of sea urchin egg protein synthesis., Carroll EJ, Epel D., Dev Biol. October 30, 1981; 87 (2): 374-8.


Ca2+-stimulated production of H2O2 from naphthoquinone oxidation in Arbacia eggs., Perry G, Epel D., Exp Cell Res. July 1, 1981; 134 (1): 65-72.


Intracellular pH of sea urchin eggs measured by the dimethyloxazolidinedione (DMO) method., Johnson CH, Epel D., J Cell Biol. May 1, 1981; 89 (2): 284-91.


Calmodulin activates NAD kinase of sea urchin eggs: an early event of fertilization., Epel D, Patton C, Wallace RW, Cheung WY., Cell. February 1, 1981; 23 (2): 543-9.


The use of fluorescent amines for the measurement of pHi: applications in liposomes, gastric microsomes, and sea urchin gametes., Lee HC, Forte JG, Epel D., Kroc Found Ser. January 1, 1981; 15 135-60.


Ionic triggers in the fertilization of sea urchin eggs., Epel D., Ann N Y Acad Sci. January 1, 1980; 339 74-85.


Regulation of cell activity at fertilization by intracellular Ca+2 and intracellular pH., Epel D., Birth Defects Orig Artic Ser. January 1, 1978; 14 (2): 377-88.


Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes., Epel D., Curr Top Dev Biol. January 1, 1978; 12 185-246.


The program of fertilization., Epel D., Sci Am. November 1, 1977; 237 (5): 128-38.


A novel procedure for obtaining denuded sea urchin eggs and observations on the role of the vitelline layer in sperm reception and egg activation., Carroll EJ, Byrd EW, Epel D., Exp Cell Res. September 1, 1977; 108 (2): 365-74.


The role of calcium ions in the acrosome reaction of sea urchin sperm: regulation of exocytosis., Collins F, Epel D., Exp Cell Res. April 1, 1977; 106 (1): 211-22.


FLAGELLAR MOTILITY IS NOT INVOLVED IN THE INCORPORATION OF THE SPERM INTO THE EGG AT FERTILIZATION., Epel D, Cross NL, Epel N., Dev Growth Differ. January 1, 1977; 19 (1): 15-21.


Intracellular pH and activation of sea urchin eggs after fertilisation., Johnson JD, Epel D., Nature. August 19, 1976; 262 (5570): 661-4.


The glutathione thiol-disulfide status in the sea urchin egg during fertilization and the first cell division cycle., Fahey RC, Mikolajczyk SD, Meier GP, Epel D, Carroll EJ., Biochim Biophys Acta. July 21, 1976; 437 (2): 445-53.


Fertilization acid of sea urchin eggs is not a consequence of cortical granule exocytosis., Paul M, Johnson JD, Epel D., J Exp Zool. July 1, 1976; 197 (1): 127-33.


Scanning electron microscope studies of sea urchin fertilization. I. Eggs with vitelline layers., Tegner MJ, Epel D., J Exp Zool. July 1, 1976; 197 (1): 31-57.


Relationship between release of surface proteins and metabolic activation of sea urchin eggs at fertilization., Johnson JD, Epel D., Proc Natl Acad Sci U S A. November 1, 1975; 72 (11): 4474-8.


Formation of fertilization acid by sea urchin eggs does not require specific cations., Paul M, Epel D., Exp Cell Res. August 1, 1975; 94 (1): 1-6.


Isolation and biological activity of the proteases released by sea urchin eggs following fertilization., Carroll EJ, Epel D., Dev Biol. May 1, 1975; 44 (1): 22-32.


Molecular mechanisms for prevention of polyspermy., Epel D, Carroll EJ., Res Reprod. March 1, 1975; 7 (2): 2-3.


Elevation and hardening of the fertilization membrane in sea urchin eggs. Role of the soluble fertilization product., Carroll EJ, Epel D., Exp Cell Res. February 1, 1975; 90 (2): 429-32.


Is calcium ionophore a universal activator for unfertilised eggs?, Steinhardt RA, Epel D, Carroll EJ, Yanagimachi R., Nature. November 1, 1974; 252 (5478): 41-3.


Protein synthesis during hormonally induced meiotic maturation and fertilization in starfish oocytes., Houk MS, Epel D., Dev Biol. October 1, 1974; 40 (2): 298-310.


An analysis of the partial metabolic derepression of sea urchin eggs by ammonia: the existence of independent pathways., Epel D, Steinhardt R, Humphreys T, Mazia D., Dev Biol. October 1, 1974; 40 (2): 245-55.


Sea urchin egg fertilization studied with a fluorescent probe (ANS)., Finegold L, Baker EA, Epel D., Exp Cell Res. June 1, 1974; 86 (2): 248-52.


Activation of sea-urchin eggs by a calcium ionophore., Steinhardt RA, Epel D., Proc Natl Acad Sci U S A. May 1, 1974; 71 (5): 1915-9.


Further studies on the glucose inhibition of beta-1,3-glucanohydrolase increase during gut differentiation of sand dollar larvae., Korn LJ, Vacquier VD, Epel D., Dev Biol. January 1, 1974; 36 (1): 1-7.


Protease released from sea urchin eggs at fertilization alters the vitelline layer and aids in preventing polyspermy., Vacquier VD, Tegner MJ, Epel D., Exp Cell Res. July 1, 1973; 80 (1): 111-9.


Sea urchin sperm-egg interactions studied with the scanning electron microscope., Tegner MJ, Epel D., Science. February 16, 1973; 179 (4074): 685-8.


Protease activity establishes the block against polyspermy in sea urchin eggs., Vacquier VD, Tegner MJ, Epel D., Nature. December 8, 1972; 240 (5380): 352-3.


Sea urchin eggs release protease activity at fertilization., Vacquier VD, Epel D, Douglas LA., Nature. May 5, 1972; 237 (5349): 34-6.


Activation of an Na + -dependent amino acid transport system upon fertilization of sea urchin eggs., Epel D., Exp Cell Res. May 1, 1972; 72 (1): 74-89.


The appearance of -amylase activity during gut differentiation in sand dollar plutei., Vacquier VD, Korn LJ, Epel D., Dev Biol. November 1, 1971; 26 (3): 393-9.


Control of enzyme synthesis in early sea urchin development: aryl sulfatase activity in normal and hybrid embryos., Fedecka-Bruner B, Anderson M, Epel D., Dev Biol. August 1, 1971; 25 (4): 655-71.


Fertilization-associated light-scattering changes in eggs of the sea urchin Strongylocentrotus purpuratus., Paul M, Epel D., Exp Cell Res. April 1, 1971; 65 (2): 281-8.


Methods for revoval of the vitelline membrane of sea urchin eggs. I. Use of dithiothreitol (Cleland Reagent)., Epel D, Weaver AM, Mazia D., Exp Cell Res. July 1, 1970; 61 (1): 64-8.


Methods for removal of the vitelline membrane of sea urchin eggs. II. Controlled exposure to trypsin to eliminate post-fertilization clumping of embryos., Epel D., Exp Cell Res. July 1, 1970; 61 (1): 69-70.


Does ADP regulate respiration following fertilization of sea urchin eggs?, Epel D., Exp Cell Res. December 1, 1969; 58 (2): 312-8.


Purification and properties of an exo-beta-D-1,3-glucanase from sea urchin eggs., Muchmore AV, Epel D, Weaver AM, Schimke RT., Biochim Biophys Acta. May 27, 1969; 178 (3): 551-60.


Beta-1,3-glucanase of sea urchin eggs: release from particles at fertilization., Epel D, Weaver AM, Muchmore AV, Schimke RT., Science. January 17, 1969; 163 (3864): 294-6.


The cytochrome system of sea urchin sperm., Wilson DF, Epel D., Arch Biochem Biophys. July 1, 1968; 126 (1): 83-90.


Protein synthesis in sea urchin eggs: a "late" response to fertilization., Epel D., Proc Natl Acad Sci U S A. April 1, 1967; 57 (4): 899-906.


Early biochemical events following fertilization of sea urchin eggs. NASA CR-673., Epel D., NASA Contract Rep NASA CR. February 1, 1967; 17-33.


THE EFFECTS OF CARBON MONOXIDE INHIBITION ON ATP LEVEL AND THE RATE OF MITOSIS IN THE SEA URCHIN EGG., Epel D., J Cell Biol. May 1, 1963; 17 (2): 315-9.

Page(s): Prev 1 2