Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase

Summary Anatomy Item Literature (231) Expression Attributions Wiki
ECB-ANAT-256

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5

Sort Newest To Oldest Sort Oldest To Newest

Tissue-restricted accumulation of a ribosomal protein mRNA is not coordinated with rRNA transcription and precedes growth of the sea urchin pluteus larva., Angerer LM., Dev Biol. January 1, 1992; 149 (1): 27-40.


A G-string positive cis-regulatory element in the LpS1 promoter binds two distinct nuclear factors distributed non-uniformly in Lytechinus pictus embryos., Xiang M., Development. December 1, 1991; 113 (4): 1345-55.


Cell movements during the initial phase of gastrulation in the sea urchin embryo., Burke RD., Dev Biol. August 1, 1991; 146 (2): 542-57.


The structure and activities of echinonectin: a developmentally regulated cell adhesion glycoprotein with galactose-specific lectin activity., Alliegro MC., Glycobiology. June 1, 1991; 1 (3): 253-6.


Tissue-specific, temporal changes in cell adhesion to echinonectin in the sea urchin embryo., Burdsal CA., Dev Biol. April 1, 1991; 144 (2): 327-34.


Structure and expression of the polyubiquitin gene in sea urchin embryos., Gong ZY., Mol Reprod Dev. February 1, 1991; 28 (2): 111-8.


Regulatory elements from the related spec genes of Strongylocentrotus purpuratus yield different spatial patterns with a lacZ reporter gene., Gan L., Dev Biol. December 1, 1990; 142 (2): 346-59.


Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma., Wray GA., Dev Biol. September 1, 1990; 141 (1): 41-54.


Temporal and spatial transcriptional regulation of the aboral ectoderm-specific Spec genes during sea urchin embryogenesis., Tomlinson CR., Mol Reprod Dev. April 1, 1990; 25 (4): 328-38.


Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation., Hardin J., Dev Biol. December 1, 1989; 136 (2): 430-45.


Gastrulation in the sea urchin is accompanied by the accumulation of an endoderm-specific mRNA., Wessel GM., Dev Biol. December 1, 1989; 136 (2): 526-36.


Endo16, a lineage-specific protein of the sea urchin embryo, is first expressed just prior to gastrulation., Nocente-McGrath C., Dev Biol. November 1, 1989; 136 (1): 264-72.


Embryonic cellular organization: differential restriction of fates as revealed by cell aggregates and lineage markers., Bernacki SH., J Exp Zool. August 1, 1989; 251 (2): 203-16.


A gene expressed in the endoderm of the sea urchin embryo., Dolecki GJ., DNA. November 1, 1988; 7 (9): 637-43.


Gastrulation in the sea urchin embryo requires the deposition of crosslinked collagen within the extracellular matrix., Wessel GM., Dev Biol. May 1, 1987; 121 (1): 149-65.


Archenteron elongation in the sea urchin embryo is a microtubule-independent process., Hardin JD., Dev Biol. May 1, 1987; 121 (1): 253-62.


A large calcium-binding protein associated with the larval spicules of the sea urchin embryo., Iwata M., Cell Differ. December 1, 1986; 19 (4): 229-36.


Spatial patterns of metallothionein mRNA expression in the sea urchin embryo., Angerer LM., Dev Biol. August 1, 1986; 116 (2): 543-7.


What do dissociated embryonic cells of the starfish, Asterina pectinifera, do to reconstruct bipinnaria larvae?, Yamanaka H., J Embryol Exp Morphol. June 1, 1986; 94 61-71.


An altered series of ectodermal gene expressions accompanying the reversible suspension of differentiation in the zinc-animalized sea urchin embryo., Nemer M., Dev Biol. March 1, 1986; 114 (1): 214-24.


Ultrastructural aspects of the surface coatings of eggs and larvae of the starfish, Pisaster ochraceus, revealed by alcian blue., Crawford B., J Morphol. January 1, 1986; 187 (1): 23-37.


The coincident time-space patterns of septate junction development in normal and exogastrulated sea urchin embryos., Spiegel E., Exp Cell Res. November 1, 1985; 161 (1): 75-87.


Sequential expression of germ-layer specific molecules in the sea urchin embryo., Wessel GM., Dev Biol. October 1, 1985; 111 (2): 451-63.


Primary differentiation and ectoderm-specific gene expression in the animalized sea urchin embryo., Nemer M., Dev Biol. June 1, 1985; 109 (2): 418-27.


Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells., Fink RD., Dev Biol. January 1, 1985; 107 (1): 66-74.


Developmental time, cell lineage, and environment regulate the newly synthesized proteins in sea urchin embryos., Pittman D., Dev Biol. November 1, 1984; 106 (1): 236-42.


Developmental regulation, induction, and embryonic tissue specificity of sea urchin metallothionein gene expression., Nemer M., Dev Biol. April 1, 1984; 102 (2): 471-82.


Molecular cloning of five individual stage- and tissue-specific mRNA sequences from sea urchin pluteus embryos., Fregien N., Mol Cell Biol. June 1, 1983; 3 (6): 1021-31.


Localization of a family of MRNAS in a single cell type and its precursors in sea urchin embryos., Lynn DA., Proc Natl Acad Sci U S A. May 1, 1983; 80 (9): 2656-60.


The role of the basal lamina in mouth formation in the embryo of the starfish Pisaster ochraceus., Crawford B., J Morphol. May 1, 1983; 176 (2): 235-246.


Separation of ectoderm and endoderm from sea urchin pluteus larvae and demonstration of germ layer-specific antigens., McClay DR., Dev Biol. August 1, 1979; 71 (2): 289-96.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5